Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Every wanna-be rocker's fantasy comes true

14.11.2006
Australia's scientific research agency, CSIRO, has 'built' a shirt which could fulfill the fantasy of anyone who has, in the privacy of their homes, jammed along with one of rock 'n roll's great lead guitarists

Australia's scientific research agency, CSIRO has 'built' a shirt which could fulfil the fantasy of anyone who has, in the privacy of their homes, jammed along with one of rock 'n roll's great lead guitarists.

Led by engineer Dr Richard Helmer a team of researchers at CSIRO Textiles and Fibre Technology in Geelong has created a 'wearable instrument shirt' (WIS) which enables users to play an 'air guitar' simply by moving one arm to pick chords and the other to strum the imaginary instrument's strings.

"Freedom of movement is a great feature of these textile-based interfaces," Dr Helmer says.

"Our air guitar consists of a wearable sensor interface embedded in a conventional 'shirt' which uses custom software to map gestures with audio samples.

"It's an easy-to-use, virtual instrument that allows real-time music making – even by players without significant musical or computing skills. It allows you to jump around and the sound generated is just like an original mp3."

The WIS works by recognising and interpreting arm movements and relaying this wirelessly to a computer for audio generation. There are no trailing cables to get in the way or trip over.

Textile motion sensors embedded in the shirt sleeves detect motion when the arm bends – in most cases the left arm chooses a note and the right arm plays it.

By customising the software, the team has also tailored the technology to make an air tambourine and an air guiro (percussion instrument).

Dr Helmer says the development of the WIS required intensive collaboration by researchers with high-level skills in computing, chemistry, electronics, music composition and textile manufacture.

"The technology – which is adaptable to almost any kind of apparel – takes clothing beyond its traditional role of protection and fashion into the realms of entertainment and a wide range of other applications including the development of clothes which will be able to monitor physiological changes," he says.

Dr. Richard Helmer | EurekAlert!
Further information:
http://www.scienceimage.csiro.au/mediarelease/air_guitar.html

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>