Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public internet access via private wireless hotspots

09.11.2006
Broadband access is increasingly necessary to get the best out of your communications. But what about when you are away from the home or office? The team in the IST project OBAN suggest using the spare capacity in residential wireless hotspots.

While the broadband revolution might be in full swing, the long-promised era of fast and seamless internet connectivity ‘anytime anywhere’ remains tantalisingly out of reach for many European citizens. One approach to this problem is to exploit the growing number of residential wireless hotspots to develop an innovative high-speed open network for broadband communication.

Starting in January 2004, the IST-funded OBAN (Open Broadband Access Network) research team has taken major strides towards building a public broadband mobile network based on residential wireless local area networks (WLANs).

The basic idea is to use the wireless LANs of existing broadband subscribers – who typically use only a small fraction of the line’s capacity – and make them available for passing or visiting users in urban and suburban areas.

In this scenario, the stationary users or hosts continue to use their wireless LAN as before, and passing users can access and maintain communication via these internet access points. Both visitors and hosts share the capacity of such wireless LANs, and access lines according to a general service agreement between all users and the network operator.

To encourage uptake among broadband subscribers, it is envisaged that they will receive some form of compensation or incentive for providing access to casual users of their unused WLAN capacity. In this way, it will be possible to offer new and better services to mobile users without having to build a new and costly wireless infrastructure.

While the idea of open broadband networks is not new, OBAN’s approach is genuinely different to what has been tried before, according to project coordinator Einar Edvardsen of Telenor in Norway.

OBAN will be the first to integrate wireless LAN with fixed networks in a legal, regulatory and commercially correct way.

Another breakthrough by OBAN will be to deliver faster handover in areas where multiple internet service providers (ISPs) are operating. Here, the broadband access may be via ADSL connections with an average delay of 10-40 milliseconds, whereas OBAN allows the user to move from one WLAN operated network to another with a maximum disruption of no more than 120 milliseconds.

In order to achieve such fast handover, OBAN has developed a unique security solution using a combined SIM and Kerberos authentication method.

Another innovative feature of the OBAN approach is its unique quality-of-service (QoS) mechanism, which guarantees that quality requirements for all users in the network are met.

The viability of the OBAN project rests on the assumption that within a few years, the majority of users will have access to a broadband network at some point. A second assumption is that wireless technology will be the predominant form of technology for in-house communication, both for residential and business users.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>