Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receivers key to Galileo success

27.10.2006
Europe’s navigation system requires new receiver designs to make use of the transmissions from its satellite constellation. European industry is developing and supplying receivers for the in-orbit validation of the system.

With the launch on 28 December 2005 of GIOVE-A, the first Galileo satellite, Galileo, a joint programme of the European Space Agency and the European Commission, became a reality in space.

GIOVE-A allowed Europe to secure the frequencies allocated to Galileo by the International Telecommunications Union and test the new, critical technologies needed for this future, civil satellite navigation system. The main component of the mission is, of course, the satellite built by Surrey Satellite Systems Ltd in the United Kingdom. However, the validation mission would not have been possible without several developments on the ground and, in particular, the equipment that allows reception of the signals transmitted by the satellite.

The Belgian company Septentrio Satellite Navigation NV provided three receivers for the GIOVE-A mission. These receivers supported calibration and validation of the signals transmitted by the satellite from its orbit, particularly on the historical date of 12 January 2006, which marked the first transmission of Galileo signals in space.

This pioneering task also demonstrated that Galileo and GPS do not interfere with one another and can be used together. This compatibility and interoperability anticipates the time when Galileo will be a constellation of 30 satellites, broadcasting its signals along with the 24 to 28 GPS satellites.

Once Galileo is operational, the user receivers will calculate their position with great accuracy due to the large number of satellites in the two systems. But before that, many different checks are necessary that only these prototype receivers can perform. Currently one receiver is in Guildford (United Kingdom), at the GIOVE-A satellite control centre, and the two others are in the ESA laboratories at the European Space Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. They are performing a thorough analysis of the signals transmitted by the satellite on the different frequencies allocated to Galileo.

Created in 2000, Septentrio was born out of the university community of Leuven near Brussels and its history runs parallel with that of satellite navigation in Europe. Septentrio was selected during tenders launched by ESA for various phases of its navigation programme and made the first receivers for EGNOS, the European Geostationary Navigation Overlay System that ‘filters’ GPS signals, providing an improved GPS-like signal and helping Europe to prepare for Galileo. With 50 employees, today this Belgian SME designs chips and software for receivers exclusively intended for professional applications, among them the first combined Galileo/GPS receiver.

The three receivers Septentrio provided for GIOVE-A were part of an early output from one of the two parallel Test User Segment contracts ESA awarded for the In Orbit Validation of the system. Septentrio is also providing 13 additional receivers, which are currently deployed in 13 sensor stations around the world as part of the GIOVE mission activity, and which will offer important feedback for the complex Galileo Ground Segment.

Additionally, Septentrio will deliver the Public Regulated Service (PRS) and Non-PRS Test Receivers as part of the Test User Segment, which will form the basis for system verification of the In Orbit Validation phase with four satellites to confirm the validity of the overall system design. ESA also has contracts with other receiver providers such as the Thales Avionique (France), the Alcatel Alenia Space (Italy) and the NovAtel (Canada).

Although launching satellites is of paramount importance, it is meaningless without the associated developments on the ground. The receivers are therefore closely linked to the success of Galileo, for which ESA is currently establishing the foundations.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEMFJ9PFHTE_index_0.html

More articles from Information Technology:

nachricht New 3-D display takes the eye fatigue out of virtual reality
22.06.2017 | The Optical Society

nachricht Modeling the brain with 'Lego bricks'
19.06.2017 | University of Luxembourg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>