Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote-control MRI exam performed over the Internet

26.10.2006
Radiologists have developed a remote-control mechanism that allows an experienced off-site operator to control a magnetic resonance imaging (MRI) machine by logging onto the Internet from a personal computer. The quality of the images from remote-control scanning was found to be superior to images obtained by a less-experienced technologist onsite. The technique is outlined in the November issue of Radiology.

"Some patients require specialized scans that not all of our technologists are familiar with, so we implemented a software program that enables us to run the MRI machine from a remote location," said J. Paul Finn, M.D., lead author and chief of diagnostic cardiovascular imaging at the David Geffen School of Medicine at the University of California at Los Angeles (UCLA). "A technologist who is skilled at performing that particular scan can log on from a personal computer and perform the exam via remote control."

After accessing the password-protected program online, a remote operator can control all of the necessary imaging parameters to conduct the exam, while a technologist onsite can give the patient instructions, monitor patient safety and administer any intravenous contrast material that might be needed. This means that specialized skills in MRI can now be implemented wherever they are needed, even if the necessary expertise is not available at the site where the MRI machine is located.

Dr. Finn said the software program was tested by performing some of the most demanding scans needed at the hospital, such as scans of pediatric patients with congenital cardiovascular disorders. The rationale was that the patients undergoing these exams are the ones for whom specialized assistance might be needed most.

In the study, 30 adult and pediatric patients underwent traditional MRI with the technologist onsite, and an additional 30 patients (also composed of adults and children) were scanned by a remote operator. The same MRI machine was used for all scans. The images were then assessed for image quality.

Overall, 90 percent of remote scans were rated as "excellent," versus 60 percent of scans performed with the operator onsite. Since the study was originally accepted for publication, Dr. Finn indicated that an additional 50 patients have been scanned with the remote-control technique, also with excellent results. This likely reflects expertise of the personnel operating the MRI machine from off-site. As with many institutions, onsite staff at UCLA may have limited experience in performing specialized cardiac or vascular scans.

Dr. Finn added that because the types of diagnostic scans they have studied are among the most complex currently undertaken, it seems reasonable to suggest that the results can be generalized to other types of studies.

"At UCLA, we have already established interstate and transatlantic remote-control connectivity, and initial results are very promising," he said. "As the speed and reliability of the Internet increases, it seems inevitable that distance will provide no barrier to the global application of this technology."

Dr. Finn emphasizes that the same technology can also be applied to computed tomography (CT)--especially for use in an emergency setting, such as a natural disaster or on the battlefield. Such events may overwhelm local resources, where technologists trained in specialized imaging techniques can be hard to find.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>