Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remote-control MRI exam performed over the Internet

26.10.2006
Radiologists have developed a remote-control mechanism that allows an experienced off-site operator to control a magnetic resonance imaging (MRI) machine by logging onto the Internet from a personal computer. The quality of the images from remote-control scanning was found to be superior to images obtained by a less-experienced technologist onsite. The technique is outlined in the November issue of Radiology.

"Some patients require specialized scans that not all of our technologists are familiar with, so we implemented a software program that enables us to run the MRI machine from a remote location," said J. Paul Finn, M.D., lead author and chief of diagnostic cardiovascular imaging at the David Geffen School of Medicine at the University of California at Los Angeles (UCLA). "A technologist who is skilled at performing that particular scan can log on from a personal computer and perform the exam via remote control."

After accessing the password-protected program online, a remote operator can control all of the necessary imaging parameters to conduct the exam, while a technologist onsite can give the patient instructions, monitor patient safety and administer any intravenous contrast material that might be needed. This means that specialized skills in MRI can now be implemented wherever they are needed, even if the necessary expertise is not available at the site where the MRI machine is located.

Dr. Finn said the software program was tested by performing some of the most demanding scans needed at the hospital, such as scans of pediatric patients with congenital cardiovascular disorders. The rationale was that the patients undergoing these exams are the ones for whom specialized assistance might be needed most.

In the study, 30 adult and pediatric patients underwent traditional MRI with the technologist onsite, and an additional 30 patients (also composed of adults and children) were scanned by a remote operator. The same MRI machine was used for all scans. The images were then assessed for image quality.

Overall, 90 percent of remote scans were rated as "excellent," versus 60 percent of scans performed with the operator onsite. Since the study was originally accepted for publication, Dr. Finn indicated that an additional 50 patients have been scanned with the remote-control technique, also with excellent results. This likely reflects expertise of the personnel operating the MRI machine from off-site. As with many institutions, onsite staff at UCLA may have limited experience in performing specialized cardiac or vascular scans.

Dr. Finn added that because the types of diagnostic scans they have studied are among the most complex currently undertaken, it seems reasonable to suggest that the results can be generalized to other types of studies.

"At UCLA, we have already established interstate and transatlantic remote-control connectivity, and initial results are very promising," he said. "As the speed and reliability of the Internet increases, it seems inevitable that distance will provide no barrier to the global application of this technology."

Dr. Finn emphasizes that the same technology can also be applied to computed tomography (CT)--especially for use in an emergency setting, such as a natural disaster or on the battlefield. Such events may overwhelm local resources, where technologists trained in specialized imaging techniques can be hard to find.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>