Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Portsmouth develops DNA switch to interface living organisms with computers

26.10.2006
Researchers at the University of Portsmouth have developed an electronic switch based on DNA - a world-first bio-nanotechnology breakthrough that provides the foundation for the interface between living organisms and the computer world.

The new technology is called a ‘nanoactuator’ or a molecular dynamo. The device is invisible to the naked eye - about one thousandth of a strand of human hair.

The DNA switch has been developed by British Molecular Biotechnology expert Dr Keith Firman at the University of Portsmouth working in collaboration with other European researchers.

Dr Firman and his international team have been awarded a €2 million (£1.36m) European Commission grant under its New and Emerging Science ad Technology (NEST) initiative to further develop this ground-breaking new technology.

But the DNA switch has immediate practical application in toxin detection, and could be used in a biodefence role as a biological sensor to detect airborne pathogens.

The future applications are also considerable, including molecular scale mechanical devices for interfacing to computer-controlled artificial limbs.

‘The possibilities are very exciting. The nanoactuator we have developed can be used as a communicator between the biological and silicon worlds,’ Dr Firman said.

‘I could see it providing an interface between muscle and external devices, but it has to be pointed out that such an application is still 20 or 30 years away.’

The molecular switch comprises of a strand of DNA anchored in a miniscule channel of a microchip, a magnetic bead, and a biological motor powered by the naturally occurring energy source found in living cells, adenosine triphosphate (ATP).

These elements working together create a dynamo effect which in turn generates electricity. The result is a device that emits electrical signals - signals that can be sent to a computer. The switch, therefore, links the biological world with the silicon world of electronic signals.

The nanoactuator has been patented by the University of Portsmouth, and a patent application for the basic concepts of biosensing is pending.

Rajiv Maharaj | alfa
Further information:
http://www.port.ac.uk

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>