Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researchers' breakthrough may help industry create more powerful computer chips

13.10.2006
Optics researchers demonstrate extreme ultraviolet light source 30 times more powerful than previously recorded attempts

A University of Central Florida research team has made a substantial inroad toward establishing extreme ultraviolet light (EUV) as a primary power source for manufacturing the next generation of computer chips.

The team, led by Martin Richardson, university trustee chair and UCF's Northrop Grumman professor of X-Ray optics, successfully demonstrated for the first time an EUV light source with 30 times the power of previous recorded attempts – enough to power the stepper machines used to reproduce detailed circuitry images onto computer chips.

The successful use of EUV light for this purpose marks a milestone in an industry-wide effort to create the most efficient and cost-effective power source for the next generation of chip production. Chips are now manufactured using longer-wavelength ultraviolet light sources.

The UCF breakthrough came as a result of a collaboration between Richardson and Powerlase Ltd., a company based in England. The company provided UCF with a powerful Starlase laser to combine with the specialized laser plasma source technology that the UCF team has developed. The unique technology combines the high conversion of laser light to EUV and effectively eliminates the neutral and charged particles that are associated with existing EUV plasma sources. If allowed to stream freely away from the source, those particles can harm the expensive optics used in EUV steppers.

The short wavelength, only 13.5 nanometers, and an uncontaminated light source are critical components for the stepper's ability to project ever-smaller circuitry onto chips.

In order to keep up with Moore's Law, a computer industry dictum written in 1965 that estimates a doubling of the number of transistors on a computer chip about every two years, significant technological changes have to be made in chip production, Richardson said.

"We must use a light source with a wavelength short enough to allow the minimum feature size on a chip to go down to possibly as low as 12 nanometers," Richardson said. The current industry standard for semiconductor production is approximately 65 nanometers. A nanometer is one-billionth of a meter; a sheet of paper is about 100,000 nanometers thick.

Richardson's EUV Photonics Laboratory, part of a broader effort on high-power laser applications that he runs, is focused on developing the EUV light source and advanced X-ray optical systems. Team members include graduate research assistant Kazu Takenoshita; graduate students Tobias Schmid, Simi George, Robert Bernath and Jose Cunado; and engineer Somak Teerawattanasook.

Research efforts have been aided by a 2004 donation of intellectual property and equipment valued in excess of $22 million to UCF's College of Optics and Photonics to support Richardson's EUV program.

Continued collaboration with industry groups such as Powerlase is allowing the work to advance exponentially, Richardson said.

"We are very excited to be able to collaborate with world-leading academic experts in the field of extreme ultraviolet sources," said Samir Ellwi, Powerlase's vice president of strategic innovations. "Our high-power, high-repetition short pulse Starlase laser is an ideal driver for the laser produced plasma EUV source."

Chad Binette | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>