Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissertation paves the way for tomorrow’s supercomputers

10.10.2006
Constructing supercomputers with shared memory and high performance either takes a great deal of time and money or results in not all programs functioning. This has long been a problem in the computer industry. In his dissertation Håkan Zeffer presents an entirely new solution that has already caught the eye of the industry. The dissertation will be publicly defended at Uppsala University in Sweden on October 13.

Many of today’s server computers contain several processors (the ‘brain’ of the computer) and support for so-called shared memory. Shared memory makes these multiprocessors simple for programmers to use, but it entails great complexity in the actual design of the computer. To achieve speed, a computer’s processor and memory are complemented by smaller ‘cache’ memories that contain the most important computer material. It’s something like having your own little black book to complement the phone book.

With shared memory and several processes, however, the problem arises that every processor’s cache memory must be designed to ‘talk with’ the others so that they will have the same information when a number in the phone book is changed, for instance. Supercomputers with shared memory are built today largely with specially constructed hardware. The great disadvantages of this are long construction times and high prices. Another way to construct supercomputers is to build the shared memory with a layer of software. This entails simpler and cheaper hardware, but also relatively low capacity and poor binary compatibility; in other words, it has not been possible to run all programs with this solution. Therefore, this approach has been considered unworkable since the 1990s.

Håkan Zeffer is now introducing something halfway between these two approaches and a solution to a more than 20-year-old problem in the computer industry. The idea is that the need for ‘coherence’ across memories is detected in the hardware, whereas the actual coordination is executed in the software. The hardware can therefore be not only simple but also small, which makes it possible to use it in many different types of processors. This system is both cheaper and more flexible. Since parts of the system are based on software, the programs and the computer itself can be optimized.

“This is a new way to build inexpensive supercomputers. The complexity is merely a fraction of that of the tradition solution, and the capacity is not only comparable with tradition systems but often better,” says Håkan Zeffer.

The idea has been patented, and the industry has expressed an interest in the new approach.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://publications.uu.se/theses/abstract.xsql?dbid=7135

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>