Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissertation paves the way for tomorrow’s supercomputers

10.10.2006
Constructing supercomputers with shared memory and high performance either takes a great deal of time and money or results in not all programs functioning. This has long been a problem in the computer industry. In his dissertation Håkan Zeffer presents an entirely new solution that has already caught the eye of the industry. The dissertation will be publicly defended at Uppsala University in Sweden on October 13.

Many of today’s server computers contain several processors (the ‘brain’ of the computer) and support for so-called shared memory. Shared memory makes these multiprocessors simple for programmers to use, but it entails great complexity in the actual design of the computer. To achieve speed, a computer’s processor and memory are complemented by smaller ‘cache’ memories that contain the most important computer material. It’s something like having your own little black book to complement the phone book.

With shared memory and several processes, however, the problem arises that every processor’s cache memory must be designed to ‘talk with’ the others so that they will have the same information when a number in the phone book is changed, for instance. Supercomputers with shared memory are built today largely with specially constructed hardware. The great disadvantages of this are long construction times and high prices. Another way to construct supercomputers is to build the shared memory with a layer of software. This entails simpler and cheaper hardware, but also relatively low capacity and poor binary compatibility; in other words, it has not been possible to run all programs with this solution. Therefore, this approach has been considered unworkable since the 1990s.

Håkan Zeffer is now introducing something halfway between these two approaches and a solution to a more than 20-year-old problem in the computer industry. The idea is that the need for ‘coherence’ across memories is detected in the hardware, whereas the actual coordination is executed in the software. The hardware can therefore be not only simple but also small, which makes it possible to use it in many different types of processors. This system is both cheaper and more flexible. Since parts of the system are based on software, the programs and the computer itself can be optimized.

“This is a new way to build inexpensive supercomputers. The complexity is merely a fraction of that of the tradition solution, and the capacity is not only comparable with tradition systems but often better,” says Håkan Zeffer.

The idea has been patented, and the industry has expressed an interest in the new approach.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://publications.uu.se/theses/abstract.xsql?dbid=7135

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>