Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissertation paves the way for tomorrow’s supercomputers

10.10.2006
Constructing supercomputers with shared memory and high performance either takes a great deal of time and money or results in not all programs functioning. This has long been a problem in the computer industry. In his dissertation Håkan Zeffer presents an entirely new solution that has already caught the eye of the industry. The dissertation will be publicly defended at Uppsala University in Sweden on October 13.

Many of today’s server computers contain several processors (the ‘brain’ of the computer) and support for so-called shared memory. Shared memory makes these multiprocessors simple for programmers to use, but it entails great complexity in the actual design of the computer. To achieve speed, a computer’s processor and memory are complemented by smaller ‘cache’ memories that contain the most important computer material. It’s something like having your own little black book to complement the phone book.

With shared memory and several processes, however, the problem arises that every processor’s cache memory must be designed to ‘talk with’ the others so that they will have the same information when a number in the phone book is changed, for instance. Supercomputers with shared memory are built today largely with specially constructed hardware. The great disadvantages of this are long construction times and high prices. Another way to construct supercomputers is to build the shared memory with a layer of software. This entails simpler and cheaper hardware, but also relatively low capacity and poor binary compatibility; in other words, it has not been possible to run all programs with this solution. Therefore, this approach has been considered unworkable since the 1990s.

Håkan Zeffer is now introducing something halfway between these two approaches and a solution to a more than 20-year-old problem in the computer industry. The idea is that the need for ‘coherence’ across memories is detected in the hardware, whereas the actual coordination is executed in the software. The hardware can therefore be not only simple but also small, which makes it possible to use it in many different types of processors. This system is both cheaper and more flexible. Since parts of the system are based on software, the programs and the computer itself can be optimized.

“This is a new way to build inexpensive supercomputers. The complexity is merely a fraction of that of the tradition solution, and the capacity is not only comparable with tradition systems but often better,” says Håkan Zeffer.

The idea has been patented, and the industry has expressed an interest in the new approach.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://publications.uu.se/theses/abstract.xsql?dbid=7135

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>