Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dissertation paves the way for tomorrow’s supercomputers

10.10.2006
Constructing supercomputers with shared memory and high performance either takes a great deal of time and money or results in not all programs functioning. This has long been a problem in the computer industry. In his dissertation Håkan Zeffer presents an entirely new solution that has already caught the eye of the industry. The dissertation will be publicly defended at Uppsala University in Sweden on October 13.

Many of today’s server computers contain several processors (the ‘brain’ of the computer) and support for so-called shared memory. Shared memory makes these multiprocessors simple for programmers to use, but it entails great complexity in the actual design of the computer. To achieve speed, a computer’s processor and memory are complemented by smaller ‘cache’ memories that contain the most important computer material. It’s something like having your own little black book to complement the phone book.

With shared memory and several processes, however, the problem arises that every processor’s cache memory must be designed to ‘talk with’ the others so that they will have the same information when a number in the phone book is changed, for instance. Supercomputers with shared memory are built today largely with specially constructed hardware. The great disadvantages of this are long construction times and high prices. Another way to construct supercomputers is to build the shared memory with a layer of software. This entails simpler and cheaper hardware, but also relatively low capacity and poor binary compatibility; in other words, it has not been possible to run all programs with this solution. Therefore, this approach has been considered unworkable since the 1990s.

Håkan Zeffer is now introducing something halfway between these two approaches and a solution to a more than 20-year-old problem in the computer industry. The idea is that the need for ‘coherence’ across memories is detected in the hardware, whereas the actual coordination is executed in the software. The hardware can therefore be not only simple but also small, which makes it possible to use it in many different types of processors. This system is both cheaper and more flexible. Since parts of the system are based on software, the programs and the computer itself can be optimized.

“This is a new way to build inexpensive supercomputers. The complexity is merely a fraction of that of the tradition solution, and the capacity is not only comparable with tradition systems but often better,” says Håkan Zeffer.

The idea has been patented, and the industry has expressed an interest in the new approach.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://publications.uu.se/theses/abstract.xsql?dbid=7135

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>