Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithm makes tongue tree

22.01.2002


Compression helps a computer tell Dante from Machiavelli


New computer programme could settle literary debates.

To date, unlike us, computers have struggled to differentiate a page of Jane Austen from one by Jackie Collins. Now researchers in Italy have developed a program that can spot enough subtle differences between two authors’ works to attribute authorship1.

The program can tell a text by Machiavelli from one by Pirandello, Dante or a host of other great Italian writers. It constructed a language tree of the degree of affinity between 50 different tongues. The tree identifies all the main linguistic groups, such as Romance, Celtic, Slavic and so forth and highlights Maltese (an Afro-Asiatic language) and Basque as anomalies.



As well as settling a few literary arguments, the technique might be useful for comparing other information-rich sequences of data. These might include genetic sequences, medical-monitoring measurements and stock-market fluctuations.

Style over substance

Identifying the language of a particular text is generally not hard in itself: one need simply look for the greatest overlap between the words used and those in a reference list for each language. Classifying linguistic styles is altogether more tricky.

One obvious approach is to compare the range and frequency of words in the sample text against reference texts from various candidate authors. That might work for markedly different styles: it would quickly distinguish Shakespeare from Tom Clancy.

But literary scholars often argue furiously about attributions for old texts. The task can become immensely difficult even for those with a great deal of knowledge about the candidate authors’ writing styles.

Clash of symbols

So Dario Benedetto and colleagues at the Universita ’La Sapienza’ in Rome try a different approach. They start from the premise that written language is in the end no more than a string of symbols. It might look rather random, but it is not.

Some groups of characters recur commonly (such as ’the’ in English), and particular authors favour certain constructions and turns of phrase. These can be measured, rather than being reliant on subjective impressions or anecdotal comparisons.

The team begin from the classic insight of telecommunications engineer Claude Shannon in the 1940s that the information content of a message is related to its entropy. Roughly speaking, entropy is a measure of how much redundancy a message contains. It can be defined as the smallest program that will produce the original message as the output.

For a random string of characters, this program would simply specify every character - it would be the same size as the original message. For a string of just A’s, the program could be very concise: ’repeat A’. Most real messages lie somewhere in-between: they can usually be compressed a little without losing significant information. This is the basis of data-compression computer algorithms, used to make ’zip’ files, for instance.

Benedetto and his colleagues borrow the principles of data-compression algorithms to calculate a kind of relative entropy for two different character strings: a measure of how much they differ. This distance between two texts is smaller for two works by the same author than for two works by different authors.

References

  1. Benedetto, D., Caglioti, E. & Loreto, V. Language trees and zipping. Physical Review Letters, 88, 048702, (2002).


PHILIP BALL | © Nature News Service

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>