Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algorithm makes tongue tree

22.01.2002


Compression helps a computer tell Dante from Machiavelli


New computer programme could settle literary debates.

To date, unlike us, computers have struggled to differentiate a page of Jane Austen from one by Jackie Collins. Now researchers in Italy have developed a program that can spot enough subtle differences between two authors’ works to attribute authorship1.

The program can tell a text by Machiavelli from one by Pirandello, Dante or a host of other great Italian writers. It constructed a language tree of the degree of affinity between 50 different tongues. The tree identifies all the main linguistic groups, such as Romance, Celtic, Slavic and so forth and highlights Maltese (an Afro-Asiatic language) and Basque as anomalies.



As well as settling a few literary arguments, the technique might be useful for comparing other information-rich sequences of data. These might include genetic sequences, medical-monitoring measurements and stock-market fluctuations.

Style over substance

Identifying the language of a particular text is generally not hard in itself: one need simply look for the greatest overlap between the words used and those in a reference list for each language. Classifying linguistic styles is altogether more tricky.

One obvious approach is to compare the range and frequency of words in the sample text against reference texts from various candidate authors. That might work for markedly different styles: it would quickly distinguish Shakespeare from Tom Clancy.

But literary scholars often argue furiously about attributions for old texts. The task can become immensely difficult even for those with a great deal of knowledge about the candidate authors’ writing styles.

Clash of symbols

So Dario Benedetto and colleagues at the Universita ’La Sapienza’ in Rome try a different approach. They start from the premise that written language is in the end no more than a string of symbols. It might look rather random, but it is not.

Some groups of characters recur commonly (such as ’the’ in English), and particular authors favour certain constructions and turns of phrase. These can be measured, rather than being reliant on subjective impressions or anecdotal comparisons.

The team begin from the classic insight of telecommunications engineer Claude Shannon in the 1940s that the information content of a message is related to its entropy. Roughly speaking, entropy is a measure of how much redundancy a message contains. It can be defined as the smallest program that will produce the original message as the output.

For a random string of characters, this program would simply specify every character - it would be the same size as the original message. For a string of just A’s, the program could be very concise: ’repeat A’. Most real messages lie somewhere in-between: they can usually be compressed a little without losing significant information. This is the basis of data-compression computer algorithms, used to make ’zip’ files, for instance.

Benedetto and his colleagues borrow the principles of data-compression algorithms to calculate a kind of relative entropy for two different character strings: a measure of how much they differ. This distance between two texts is smaller for two works by the same author than for two works by different authors.

References

  1. Benedetto, D., Caglioti, E. & Loreto, V. Language trees and zipping. Physical Review Letters, 88, 048702, (2002).


PHILIP BALL | © Nature News Service

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>