Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer hunt for rock carvings

15.09.2006
A new imaging technique is helping archaeologists to find, interpret and conserve rock carvings in digital format
By Christina B. Winge
The technology that archaeologists and ICT researchers have recently adopted is called “structured light”. It is a method that quickly and easily reads off the three-dimensional shape of an object with the aid of a camera and a video projector. The images are transferred to a computer, which constructs a detailed three-dimensional model of the object. The method is normally used in reverse engineering, the process of making a 3D computer model of an existing physical object. It has also been used for product quality control, for example in the engineering industry.

Kalle Sognnes, a professor of archaeology at NTNU, is extremely pleased with the help he has received from SINTEF research scientist Øystein Skotheim, and he believes that the new method will arouse the interest of archaeologists elsewhere, not least because the imaging technique helps researchers to see more than the human eye can manage alone. This will make it easier to reveal scratches that otherwise would have been difficult to see . The method also allows more details of such scratchings.

Need for modernisation

The background for the trials of the new system is that NTNU’s archaeologists needed better, more modern methods of documenting and characterising rock carvings. They therefore contacted SINTEF’s Dept. of Optical Measurement Systems and Data Analysis, which suggested trying out imaging with structured light. After a few preliminary experiments at the Museum of Natural History and Archaeology in Trondheim, the researchers are extremely pleased with the system.

The method makes it possible to retain the three-dimensional characteristics of rock carving for the future, using relatively inexpensive existing equipment. A problem is that rock carvings break down and are weakened in the course of time. Another important advantage is that the equipment is easy to transport and to rig up and dismantle.

“We know that other archaeology groups have tried to do the same thing with less advanced laser equipment, such equipment is time-consuming to use, and it is not easy to bring it out into the field,” says Sognnes.

More revealing

In many rock carving fields, scratches have been made at several levels on the same spot, which means that a rock carving may hide another older one lying below it. Going “into depth” with the computer model makes it possible to identify, for example, whether the carvings have been made using different types of tool or with different techniques, and thus during different epochs.

Skotheim adds that this method of imaging and processing data from ancient monuments will make it possible to produce virtual exhibitions on the Internet, or to feed data directly into a milling machine to produce exact full-scale copies of the originals. This could bring antiquities within the reach of many more people than hitherto.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>