Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer hunt for rock carvings

15.09.2006
A new imaging technique is helping archaeologists to find, interpret and conserve rock carvings in digital format
By Christina B. Winge
The technology that archaeologists and ICT researchers have recently adopted is called “structured light”. It is a method that quickly and easily reads off the three-dimensional shape of an object with the aid of a camera and a video projector. The images are transferred to a computer, which constructs a detailed three-dimensional model of the object. The method is normally used in reverse engineering, the process of making a 3D computer model of an existing physical object. It has also been used for product quality control, for example in the engineering industry.

Kalle Sognnes, a professor of archaeology at NTNU, is extremely pleased with the help he has received from SINTEF research scientist Øystein Skotheim, and he believes that the new method will arouse the interest of archaeologists elsewhere, not least because the imaging technique helps researchers to see more than the human eye can manage alone. This will make it easier to reveal scratches that otherwise would have been difficult to see . The method also allows more details of such scratchings.

Need for modernisation

The background for the trials of the new system is that NTNU’s archaeologists needed better, more modern methods of documenting and characterising rock carvings. They therefore contacted SINTEF’s Dept. of Optical Measurement Systems and Data Analysis, which suggested trying out imaging with structured light. After a few preliminary experiments at the Museum of Natural History and Archaeology in Trondheim, the researchers are extremely pleased with the system.

The method makes it possible to retain the three-dimensional characteristics of rock carving for the future, using relatively inexpensive existing equipment. A problem is that rock carvings break down and are weakened in the course of time. Another important advantage is that the equipment is easy to transport and to rig up and dismantle.

“We know that other archaeology groups have tried to do the same thing with less advanced laser equipment, such equipment is time-consuming to use, and it is not easy to bring it out into the field,” says Sognnes.

More revealing

In many rock carving fields, scratches have been made at several levels on the same spot, which means that a rock carving may hide another older one lying below it. Going “into depth” with the computer model makes it possible to identify, for example, whether the carvings have been made using different types of tool or with different techniques, and thus during different epochs.

Skotheim adds that this method of imaging and processing data from ancient monuments will make it possible to produce virtual exhibitions on the Internet, or to feed data directly into a milling machine to produce exact full-scale copies of the originals. This could bring antiquities within the reach of many more people than hitherto.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>