Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fingerprinting for art authentication

15.09.2006
A new technique to identify objects of art will be foolproof, according to a University of Southampton researcher.

FING-ART-PRINT, a 2.5-year project funded by the European Commission, undertaken by a consortium of European partners, aims to provide a means of uniquely identifying art and cultural objects and will protect against illegal trafficking of cultural heritage.

According to Dr. Kirk Martinez at the University of Southampton’s School of Electronics & Computer Science (ECS), such a non-contact system has never been developed in this way before. ‘We are developing a system which is very much foolproof’, he said.

The system is based on the owner of the work selecting, for example, one square centimetre. The roughness/texture and colour of that square centimetre are then measured on a micrometer scale, and put into a database. Objects and collections which are fingerprinted can then be easily identified and traced when on loan or in transport.

‘The advantage of this system is that it replaces physical marking systems and can be done in any location’, said Dr Martinez. ‘For example, it can be used at airports to do spot checks.’

At the moment the researchers are inviting potential users to provide objects for fingerprinting as part of an 18-month trial which will be run before the system is widely available.

The partners in FING-ART-PRINT are: the Netherlands Institute for Cultural Heritage (ICN - coordinator), Nanofocus AG, Germany, ELDIM S.A, France, Université Pierre et Marie Curie, France, ‘Ormylia’ Art Diagnosis Centre, Greece and the University of Southampton.

Helene Murphy | alfa
Further information:
http://www.fingartprint.org/
http://www.ecs.soton.ac.uk

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>