Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation Brings New Life to Animated Characters

31.08.2006
As the number of film and video game releases featuring computer-generated characters and sequences increases, the experts at the National Centre for Computer Animation at Bournemouth University have unveiled a clever new system to bring more realistic movement to animated characters.

The development, lead by Bournemouth researcher Prof Jian Zhang and his colleague Dr Xiaosong Yang, allows animators to ‘flesh out’ their characters from the outside appearance rather than take the more conventional route of working from the inside out. When an animator is happy with a character’s appearance, the computer will automatically generate an appropriate anatomy to fit inside resulting in more realistic movement. The new system is so adaptable, it can be used to create almost any humanoid or animal character so long as the shape of the skeleton and the consistency of the skin is known.

“In animation, what looks right is right but when it comes to movement and appearance, both the public and the industry are demanding more and more realism from computer animated characters,” says Professor Zhang, Director of Bournemouth’s Computer Animation Research Centre. “This is usually very difficult and time-consuming for animators to achieve; using the traditional muscle-based approach, they usually start to work from a basic skeleton and then spend hours adding layers of muscle and then skin. The movement and skin deformation is then determined from that process and can often lack the realism appropriate to the story, which both the animators and audiences really desire.”

“Using our software, it is now possible for animators to replace all of that ‘mechanical’ work with a new process that builds the internal structure of a character based on its outward appearance putting the animator in complete control of the creative process but saving hours and hours of development time,” Professor Zhang. “The software can determine a suitable humanoid skeleton for the character based on its appearance and can then attach muscles to that skeleton to fit the character’s shape making it move more realistically in a way that our movement is governed by our musculo-skeletal make-up.”

In addition to commercial applications within the entertainment industry, Professor Zhang and his colleagues can also see more practical applications in medicine emerging as doctors seek to use the outward appearance of a patient to determine the biomechanics of their anatomy.

“Having used this new system ourselves, we believe it to be a very useful tool,” Professor Zhang concludes. “There are still lots of technological challenges ahead for computer animation but this development is certainly an aid to the animator who is able to accelerate the animation process without having to learn an entirely different production approach.”

Charles Elder | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/jhome/106562739?CRETRY=1&SRETRY=0

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>