Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation Brings New Life to Animated Characters

31.08.2006
As the number of film and video game releases featuring computer-generated characters and sequences increases, the experts at the National Centre for Computer Animation at Bournemouth University have unveiled a clever new system to bring more realistic movement to animated characters.

The development, lead by Bournemouth researcher Prof Jian Zhang and his colleague Dr Xiaosong Yang, allows animators to ‘flesh out’ their characters from the outside appearance rather than take the more conventional route of working from the inside out. When an animator is happy with a character’s appearance, the computer will automatically generate an appropriate anatomy to fit inside resulting in more realistic movement. The new system is so adaptable, it can be used to create almost any humanoid or animal character so long as the shape of the skeleton and the consistency of the skin is known.

“In animation, what looks right is right but when it comes to movement and appearance, both the public and the industry are demanding more and more realism from computer animated characters,” says Professor Zhang, Director of Bournemouth’s Computer Animation Research Centre. “This is usually very difficult and time-consuming for animators to achieve; using the traditional muscle-based approach, they usually start to work from a basic skeleton and then spend hours adding layers of muscle and then skin. The movement and skin deformation is then determined from that process and can often lack the realism appropriate to the story, which both the animators and audiences really desire.”

“Using our software, it is now possible for animators to replace all of that ‘mechanical’ work with a new process that builds the internal structure of a character based on its outward appearance putting the animator in complete control of the creative process but saving hours and hours of development time,” Professor Zhang. “The software can determine a suitable humanoid skeleton for the character based on its appearance and can then attach muscles to that skeleton to fit the character’s shape making it move more realistically in a way that our movement is governed by our musculo-skeletal make-up.”

In addition to commercial applications within the entertainment industry, Professor Zhang and his colleagues can also see more practical applications in medicine emerging as doctors seek to use the outward appearance of a patient to determine the biomechanics of their anatomy.

“Having used this new system ourselves, we believe it to be a very useful tool,” Professor Zhang concludes. “There are still lots of technological challenges ahead for computer animation but this development is certainly an aid to the animator who is able to accelerate the animation process without having to learn an entirely different production approach.”

Charles Elder | alfa
Further information:
http://www3.interscience.wiley.com/cgi-bin/jhome/106562739?CRETRY=1&SRETRY=0

More articles from Information Technology:

nachricht Goodbye, login. Hello, heart scan
26.09.2017 | University at Buffalo

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>