Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Reports JitterBugs Could Turn Your Keyboard Against You, Steal Data

09.08.2006
Researchers from the University of Pennsylvania School of Engineering and Applied Science warn against an entirely new threat to computer security: peripheral devices -- such as keyboards, mice or microphones -- which could be physically bugged in an attempt to steal data. Penn graduate student Gaurav Shah has identified a class of devices that could covertly transmit data across an existing network connection without the user's knowledge.

They are called JitterBugs, named by Shah's advisor, Penn Associate Professor Matthew Blaze, for both the way they transmit stolen data in "jittery" chunks by adding nearly imperceptible processing delays after a keystroke and for the "jitters" such a bug could inspire in anyone with secure data to safeguard.

Shah presented his findings Aug. 3 at the USENIX Security Conference in Vancouver, B.C., where it was designated the "Best Student Paper" by conference organizers. As proof of the concept, Shah and his colleagues built a functional keyboard JitterBug with little difficulty.

"This is spy stuff. Someone would need physical access to your keyboard to place a JitterBug device, but it could be quite easy to hide such a bug in plain sight among cables or even replace a keyboard with a bugged version," said Shah, a graduate student in Penn's Department of Computers and Information Science. "Although we do not have evidence that anyone has actually been using JitterBugs, our message is that if we were able to build one, so could other, less scrupulous people."

JitterBug devices are conceptually similar to keystroke loggers, such as the one famously used by the FBI to gather evidence against bookmaker Nicodemo Scarfo Jr. Unlike keystroke loggers, which would have to be physically installed into a subject's computer and then retrieved, a keyboard JitterBug only needs to be installed. The device itself sends the collected information through any interactive software application where there is a correlation between keyboard activity and network activity, such as instant messaging, SSH or remote desktop applications. The bug leaks the stolen data through short, virtually unnoticeable delays added every time the user presses a key.

Anytime the user surfs the web, sends an e-mail or instant messages someone, an implanted JitterBug could be timed to open a covert jitter channel to send stolen data. According to Shah, a JitterBug could not log and transmit every touch of the key due to limited storage space on the device, but it could be primed to record a keystroke with a particular trigger.

"For example, one could pre-program a JitterBug with the user name of the target as a trigger on the assumption that the following keystrokes would include the user's password," Shah said. "Triggers might also be more generic, perhaps programmed to detect certain typing patterns that indicate some sort of important information might follow."

JitterBugs are potentially worrisome to governments, universities or corporations with information meant to be kept confidential. One particular scenario is what Blaze refers to as a "Supply Chain Attack," in which the manufacture of computer peripherals could be compromised. Such an attack could, for example, result in a large number of such JitterBugged keyboards in the market. An attacker would only then need to wait until a target of interest acquires a bugged keyboard.

According to Shah, the channel through which the JitterBug transmits data is also the point where it could be most easily detected and countered.

While his presentation only discussed simple countermeasures to JitterBugs, Shah's initial results indicate that the use of cryptographic techniques to hide the use of encoded jitter channels might be a promising approach.

"We normally do not think of our keyboard and input devices as being something that needs be secured; however, our research shows that if people really wanted to secure a system, they would also need to make sure that these devices can be trusted," Shah said. "Unless they are particularly paranoid, however, the average person does not need to worry about spies breaking into their homes and installing JitterBugs."

Funding for this research was provided through grants received by Blaze from the National Science Foundation's Cybertrust program.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>