Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Reports JitterBugs Could Turn Your Keyboard Against You, Steal Data

09.08.2006
Researchers from the University of Pennsylvania School of Engineering and Applied Science warn against an entirely new threat to computer security: peripheral devices -- such as keyboards, mice or microphones -- which could be physically bugged in an attempt to steal data. Penn graduate student Gaurav Shah has identified a class of devices that could covertly transmit data across an existing network connection without the user's knowledge.

They are called JitterBugs, named by Shah's advisor, Penn Associate Professor Matthew Blaze, for both the way they transmit stolen data in "jittery" chunks by adding nearly imperceptible processing delays after a keystroke and for the "jitters" such a bug could inspire in anyone with secure data to safeguard.

Shah presented his findings Aug. 3 at the USENIX Security Conference in Vancouver, B.C., where it was designated the "Best Student Paper" by conference organizers. As proof of the concept, Shah and his colleagues built a functional keyboard JitterBug with little difficulty.

"This is spy stuff. Someone would need physical access to your keyboard to place a JitterBug device, but it could be quite easy to hide such a bug in plain sight among cables or even replace a keyboard with a bugged version," said Shah, a graduate student in Penn's Department of Computers and Information Science. "Although we do not have evidence that anyone has actually been using JitterBugs, our message is that if we were able to build one, so could other, less scrupulous people."

JitterBug devices are conceptually similar to keystroke loggers, such as the one famously used by the FBI to gather evidence against bookmaker Nicodemo Scarfo Jr. Unlike keystroke loggers, which would have to be physically installed into a subject's computer and then retrieved, a keyboard JitterBug only needs to be installed. The device itself sends the collected information through any interactive software application where there is a correlation between keyboard activity and network activity, such as instant messaging, SSH or remote desktop applications. The bug leaks the stolen data through short, virtually unnoticeable delays added every time the user presses a key.

Anytime the user surfs the web, sends an e-mail or instant messages someone, an implanted JitterBug could be timed to open a covert jitter channel to send stolen data. According to Shah, a JitterBug could not log and transmit every touch of the key due to limited storage space on the device, but it could be primed to record a keystroke with a particular trigger.

"For example, one could pre-program a JitterBug with the user name of the target as a trigger on the assumption that the following keystrokes would include the user's password," Shah said. "Triggers might also be more generic, perhaps programmed to detect certain typing patterns that indicate some sort of important information might follow."

JitterBugs are potentially worrisome to governments, universities or corporations with information meant to be kept confidential. One particular scenario is what Blaze refers to as a "Supply Chain Attack," in which the manufacture of computer peripherals could be compromised. Such an attack could, for example, result in a large number of such JitterBugged keyboards in the market. An attacker would only then need to wait until a target of interest acquires a bugged keyboard.

According to Shah, the channel through which the JitterBug transmits data is also the point where it could be most easily detected and countered.

While his presentation only discussed simple countermeasures to JitterBugs, Shah's initial results indicate that the use of cryptographic techniques to hide the use of encoded jitter channels might be a promising approach.

"We normally do not think of our keyboard and input devices as being something that needs be secured; however, our research shows that if people really wanted to secure a system, they would also need to make sure that these devices can be trusted," Shah said. "Unless they are particularly paranoid, however, the average person does not need to worry about spies breaking into their homes and installing JitterBugs."

Funding for this research was provided through grants received by Blaze from the National Science Foundation's Cybertrust program.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>