Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Reports JitterBugs Could Turn Your Keyboard Against You, Steal Data

09.08.2006
Researchers from the University of Pennsylvania School of Engineering and Applied Science warn against an entirely new threat to computer security: peripheral devices -- such as keyboards, mice or microphones -- which could be physically bugged in an attempt to steal data. Penn graduate student Gaurav Shah has identified a class of devices that could covertly transmit data across an existing network connection without the user's knowledge.

They are called JitterBugs, named by Shah's advisor, Penn Associate Professor Matthew Blaze, for both the way they transmit stolen data in "jittery" chunks by adding nearly imperceptible processing delays after a keystroke and for the "jitters" such a bug could inspire in anyone with secure data to safeguard.

Shah presented his findings Aug. 3 at the USENIX Security Conference in Vancouver, B.C., where it was designated the "Best Student Paper" by conference organizers. As proof of the concept, Shah and his colleagues built a functional keyboard JitterBug with little difficulty.

"This is spy stuff. Someone would need physical access to your keyboard to place a JitterBug device, but it could be quite easy to hide such a bug in plain sight among cables or even replace a keyboard with a bugged version," said Shah, a graduate student in Penn's Department of Computers and Information Science. "Although we do not have evidence that anyone has actually been using JitterBugs, our message is that if we were able to build one, so could other, less scrupulous people."

JitterBug devices are conceptually similar to keystroke loggers, such as the one famously used by the FBI to gather evidence against bookmaker Nicodemo Scarfo Jr. Unlike keystroke loggers, which would have to be physically installed into a subject's computer and then retrieved, a keyboard JitterBug only needs to be installed. The device itself sends the collected information through any interactive software application where there is a correlation between keyboard activity and network activity, such as instant messaging, SSH or remote desktop applications. The bug leaks the stolen data through short, virtually unnoticeable delays added every time the user presses a key.

Anytime the user surfs the web, sends an e-mail or instant messages someone, an implanted JitterBug could be timed to open a covert jitter channel to send stolen data. According to Shah, a JitterBug could not log and transmit every touch of the key due to limited storage space on the device, but it could be primed to record a keystroke with a particular trigger.

"For example, one could pre-program a JitterBug with the user name of the target as a trigger on the assumption that the following keystrokes would include the user's password," Shah said. "Triggers might also be more generic, perhaps programmed to detect certain typing patterns that indicate some sort of important information might follow."

JitterBugs are potentially worrisome to governments, universities or corporations with information meant to be kept confidential. One particular scenario is what Blaze refers to as a "Supply Chain Attack," in which the manufacture of computer peripherals could be compromised. Such an attack could, for example, result in a large number of such JitterBugged keyboards in the market. An attacker would only then need to wait until a target of interest acquires a bugged keyboard.

According to Shah, the channel through which the JitterBug transmits data is also the point where it could be most easily detected and countered.

While his presentation only discussed simple countermeasures to JitterBugs, Shah's initial results indicate that the use of cryptographic techniques to hide the use of encoded jitter channels might be a promising approach.

"We normally do not think of our keyboard and input devices as being something that needs be secured; however, our research shows that if people really wanted to secure a system, they would also need to make sure that these devices can be trusted," Shah said. "Unless they are particularly paranoid, however, the average person does not need to worry about spies breaking into their homes and installing JitterBugs."

Funding for this research was provided through grants received by Blaze from the National Science Foundation's Cybertrust program.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>