Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


EU quantum information research could transform the power of computing

Although presently a very young field, Quantum Information Science and Technology (QIST) could well have a vital role to play in future information and communication technologies. Quantum computing and communication techniques have the potential to transform the way we think about computing power.

Or so believes Daniele Binosi (of the Institute of Quantum Optics and Quantum Information in Innsbruck, Austria, and the European Centre for Theoretical Studies in Nuclear Physics and Related Areas in Trento, Italy) of the ERA-Pilot QIST project. “Once we can build a quantum computer, the result will be a revolution much like the initial growth in information technology. It will not be so much an evolution in processing power as a revolution. We cannot even imagine now the increase in processing power that will become available.”

A key objective for this IST-funded project is to promote QIST research in Europe by helping to structure a specialist research community, and to build improved communication channels and cooperation methods for the various groups involved. The project partners are also developing proposals for a future infrastructure that will underpin sustainable development of the progress achieved in this area.

“Scientifically,” says Binosi, “there are no obstacles to the development of quantum computing methodologies. What could slow things down is a lack of EU or regional funding. If funding is maintained at present levels we could start to lag behind the US, not to mention other countries that are coming up fast in this area, such as Australia and Japan. This is why a higher funding level for QIPC [Quantum Information Processing and Communications] in FP7, [the EU’s Seventh Framework Programme for research], is so essential to maintaining European research at the forefront in this area.”

The ‘QIPC - Strategic report on current status, visions and goals for research in Europe’ document is widely known as the ‘European QIPC roadmap’. An early challenge is, admits Binosi, that at present there is no one single technological platform upon which policy-makers can focus. The QIPC roadmap recommends that the spectrum for research funding should be kept as wide as possible in all three sub-domains: quantum communication, quantum computation and quantum information science. “It is too early to pick a winning technology now. So funding needs to support a widespread research effort – it may simply be that the killer technology has not been discovered yet!”

What other recommendations have emerged from the initial strategic report? “In the quantum computing field, we are trying to focus on technologies that are scalable,” replies Binosi. “For example nuclear magnetic resonance technology is good in principle, but not scalable. We also need to keep in mind that we should be able to miniaturise.”

Binosi points to another example in the area of quantum communications. “There is a big effort towards building a so-called quantum repeater. This is a device essential in many applications, for example, to extend the working distance of secure quantum cryptosystems. Once we succeed, we will have globally secure quantum communications, which will be unbreakable even by powerful quantum computers.”

However, one of the most important differences picked out in the European QIPC roadmap is the unique strategic approach being taken in Europe. “In comparison with other roadmaps in the area of QIPC, the characteristics of the European effort are its broader scope, beyond the focus on specific issues like security or special applications like factoring, as for example in the US roadmap,” says Binosi. “The European QIPC roadmap has a bottom-up approach, which gives us a broader perspective of research fields rather than just a focus on specific issues.”

He also points out that, “The EU and the US are aiming for slightly different research objectives in their respective QIPC roadmaps, even if both sets of objectives are extremely challenging.” Binosi notes that the EU and US roadmaps were initiated at different times and have different target dates. The US roadmap commenced in 2002, and aims to achieve its long-term goals in quantum computing by 2012, and in quantum communications / cryptography by 2014. “The EU strategic effort commenced in late 2004, and we aim to achieve our long-term goals in ten years from now.”

The first version of the strategic report produced by ERA-Pilot QIST was presented in late Summer 2005. An updated version was published as an European Commission publication in January 2006. With this initial roadmap now complete, the next steps for the project partners are to draw up a guide to national and European funding agencies, to elaborate further coordination measures and propose approaches to organisation and management.

The ERA-Pilot QIST project is scheduled for completion in 2007, when another project, QUROPE, will take over and expand activities.

Jernett Karensen | alfa
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>