Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


EGNOS follows the Tour de France

The riders in the Tour de France were tracked again this year by EGNOS, the European navigation system that allows precise positioning via satellite. This is the third year that the European Space Agency has been involved in tests of satellite localisation during the Tour de France.
This year, the trials, conducted in partnership with the race organiser - Amaury Sport Organisation (ASO), took place over two of the tour’s stages: the eighteenth – a descent from Morzine, in the Alps, to Macon, in Bourgogne, and then the nineteenth – a time-trial between Le Creusot and Monceau-les-Mines.

During the alpine descent stage, nearly twenty cyclists agreed to wear a receiver in the back of their shirts. The devices, which now weigh only 95 grams, received data from satellites and relayed them for processing by a computer in The Netherlands.

Near the arrival line, in the technical zone of the tour, this data was presented on computer screens, allowing an appreciation of the performance of each tracked rider, notably showing their speed. For the first time it was possible to follow this many riders and see their positions in real time with an accuracy of one metre.

For the individual time-trial between Le Creusot and Montceau-les-Mines, the benefits of satellite tracking were perfectly illustrated by the race situation. Just a day ahead of the final arrival on the Champs Elysées in Paris, three riders were ranked within 30 seconds of one another in the overall standings and the yellow jersey could change wearer at any moment. The immediate visualisation offered by EGNOS showed in real time how the overall standings were being modified as the stage progressed.

A number of riders were equipped with the prototype receivers and in particular the first fifteen in the overall standing were all tracked. This made it possible to have a live view of the positions of the various riders who could hope to take the yellow jersey and therefore to watch American Floyd Landis take the yellow from Spaniard Oscar Pereiro and Germany’s Andreas Kloden grab second place from Carlos Sastre of Spain.

This demonstration was conducted by two Small/Medium Enterprises (SMEs), the Dutch company Sport-Track, which is developing the tracking software, and Trimaran of France, specialising in the production of 3D images. It was possible to see what the Tour de France might be like in the future, since space technologies could be used throughout the race and for all the riders.

These full scale tests showed that satellite positioning can bring an immediate understanding of the race. This has numerous applications, the design of which will depend on the needs of the potential users: the organisers, the teams, the media or the public.

EGNOS (European Geostationary Navigation Overlay Service) is a programme of ESA, the European Commission, and Eurocontrol. It comprises a network of around 40 ground stations distributed throughout Europe to record, adjust and improve data from the American GPS system. The modified signals are then relayed by geostationary satellites to the receivers of system users. In contrast to the 15 to 20 metre accuracy offered by GPS, the European system is accurate to better than 2 metres, and unlike GPS, a military system, the European version provides guaranteed signal quality.

EGNOS, which is currently in pre-operational service, is Europe’s first step in satellite navigation as it prepares for Galileo, which will be the first civilian navigation system, with a constellation of 30 satellites.

Dominique Detain | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>