Flights into the mountains will become safer

It would appear that there are radars, land-based services and so on – why is it that aircraft and helicopters continue to crash, especially during take off and landing at aerodromes in mountainous regions?

There are several reasons. One is the insufficiencies of existing air traffic control systems: they do not always allow flight control at low altitudes or in regions that are hard to access for observation, that is airstrips that do not appear on a radar field. Furthermore, faults are also possible on boundaries of interacting systems. It is namely this, in conditions of an ever growing intensity of air travel, that leads to the number of dangerous near misses of aircraft and helicopters with mountain slopes constantly increasing, even in conditions of good visibility.

In this situation it is quite clear that people, that is, pilots and dispatchers, need the help of machines. There must be devices that, in any weather, and this is most important, would detect that the flight is in a direct course for a mountain and which would either send a signal to the pilot or send the appropriate command to the autopilot. Alas, no individual or major corporation has to date been able to make such devices. However, a breakthrough has been noted: scientists from the Samara State Technical University and their neighbours from Ekran have recently proposed a solution to the problem. And a very realistic solution it is, too. They have already patented and are now researching a system to prevent accidental collisions of aircraft and helicopters with mountainous terrain. Experts from the International Science and Technology Centre have placed information on this development on their website, in the Promising Research section.

The essence of this solution is that the scientists were able to overcome the so-called “paradox of mountainous terrain”, where a Doppler shift of the frequency of the total signal (dependence of the frequency of the radio signal on the speed of its source) at the output of the radar is identical both in flight over a mountain slope and in flight over a flat terrain. Leaving to one side the technical and theoretical explanations of this phenomenon, we shall note only that the authors from Samara have devised a way to overcome this paradox and they have been able in one device to use two methods to determine the spatial-temporal parameters of the aircraft – the impulse radar parameter and the Doppler parameter. A special computer with specially developed software enables the analysis of these data, the detection of the mountain slope accordant to the course of the aircraft, evaluation of the steepness of the slope and the distance remaining to it. In other words – this is the recognition, to a high degree of probability, of a natural obstacle and the instantaneous warning of the pilot of the fact or the issuing of a command to alter the aircraft’s course.

“It should be said that our team, specialists from the Samara State Technical University and Ekran previously fulfilled a similar project, and successfully, too,” explains a project participant and Head of the Research and Experimental Department of Research Institute Ekran, Yuri Golubev. “We developed a system to prevent the collision of automobiles, travelling in a string, in conditions of very poor visibility, including at night in blackout conditions. We also developed radar for automobiles that informs the driver of the critical distance to the car travelling in front, with account of the absolute speed of travel, speed of convergence and the condition of the road. Of course, with aircraft the speeds are different, but we know how to make this declared system. And we already have the required experience, and the technical and theoretical run of work. The matter is now down to financing.

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors