Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flights into the mountains will become safer

26.07.2006
Pilots know well that flying in mountainous regions, be it in an aircraft or a helicopter, is both difficult and fairly dangerous. Even in good weather, when visibility is excellent, let alone when the weather is poor, in complex meteorological or conditions of poor visibility. When suddenly, unexpectedly, an aircraft finds itself in dangerous proximity to a mountain slope, there are only seconds to make a decision and then implement this decision; the speed that the obstacle comes nearer is very high. When the obstacle is another aircraft, the situation is only exacerbated. There is not always sufficient time to safely alter one’s course and steer away from the obstacle.

It would appear that there are radars, land-based services and so on – why is it that aircraft and helicopters continue to crash, especially during take off and landing at aerodromes in mountainous regions?

There are several reasons. One is the insufficiencies of existing air traffic control systems: they do not always allow flight control at low altitudes or in regions that are hard to access for observation, that is airstrips that do not appear on a radar field. Furthermore, faults are also possible on boundaries of interacting systems. It is namely this, in conditions of an ever growing intensity of air travel, that leads to the number of dangerous near misses of aircraft and helicopters with mountain slopes constantly increasing, even in conditions of good visibility.

In this situation it is quite clear that people, that is, pilots and dispatchers, need the help of machines. There must be devices that, in any weather, and this is most important, would detect that the flight is in a direct course for a mountain and which would either send a signal to the pilot or send the appropriate command to the autopilot. Alas, no individual or major corporation has to date been able to make such devices. However, a breakthrough has been noted: scientists from the Samara State Technical University and their neighbours from Ekran have recently proposed a solution to the problem. And a very realistic solution it is, too. They have already patented and are now researching a system to prevent accidental collisions of aircraft and helicopters with mountainous terrain. Experts from the International Science and Technology Centre have placed information on this development on their website, in the Promising Research section.

The essence of this solution is that the scientists were able to overcome the so-called “paradox of mountainous terrain”, where a Doppler shift of the frequency of the total signal (dependence of the frequency of the radio signal on the speed of its source) at the output of the radar is identical both in flight over a mountain slope and in flight over a flat terrain. Leaving to one side the technical and theoretical explanations of this phenomenon, we shall note only that the authors from Samara have devised a way to overcome this paradox and they have been able in one device to use two methods to determine the spatial-temporal parameters of the aircraft – the impulse radar parameter and the Doppler parameter. A special computer with specially developed software enables the analysis of these data, the detection of the mountain slope accordant to the course of the aircraft, evaluation of the steepness of the slope and the distance remaining to it. In other words – this is the recognition, to a high degree of probability, of a natural obstacle and the instantaneous warning of the pilot of the fact or the issuing of a command to alter the aircraft’s course.

“It should be said that our team, specialists from the Samara State Technical University and Ekran previously fulfilled a similar project, and successfully, too,” explains a project participant and Head of the Research and Experimental Department of Research Institute Ekran, Yuri Golubev. “We developed a system to prevent the collision of automobiles, travelling in a string, in conditions of very poor visibility, including at night in blackout conditions. We also developed radar for automobiles that informs the driver of the critical distance to the car travelling in front, with account of the absolute speed of travel, speed of convergence and the condition of the road. Of course, with aircraft the speeds are different, but we know how to make this declared system. And we already have the required experience, and the technical and theoretical run of work. The matter is now down to financing.

Andrew Vakhliaev | alfa
Further information:
http://www.istc.ru
http://tech-db.istc.ru/ISTC/sc.nsf/events/flights-into-the-mountains

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>