Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flights into the mountains will become safer

26.07.2006
Pilots know well that flying in mountainous regions, be it in an aircraft or a helicopter, is both difficult and fairly dangerous. Even in good weather, when visibility is excellent, let alone when the weather is poor, in complex meteorological or conditions of poor visibility. When suddenly, unexpectedly, an aircraft finds itself in dangerous proximity to a mountain slope, there are only seconds to make a decision and then implement this decision; the speed that the obstacle comes nearer is very high. When the obstacle is another aircraft, the situation is only exacerbated. There is not always sufficient time to safely alter one’s course and steer away from the obstacle.

It would appear that there are radars, land-based services and so on – why is it that aircraft and helicopters continue to crash, especially during take off and landing at aerodromes in mountainous regions?

There are several reasons. One is the insufficiencies of existing air traffic control systems: they do not always allow flight control at low altitudes or in regions that are hard to access for observation, that is airstrips that do not appear on a radar field. Furthermore, faults are also possible on boundaries of interacting systems. It is namely this, in conditions of an ever growing intensity of air travel, that leads to the number of dangerous near misses of aircraft and helicopters with mountain slopes constantly increasing, even in conditions of good visibility.

In this situation it is quite clear that people, that is, pilots and dispatchers, need the help of machines. There must be devices that, in any weather, and this is most important, would detect that the flight is in a direct course for a mountain and which would either send a signal to the pilot or send the appropriate command to the autopilot. Alas, no individual or major corporation has to date been able to make such devices. However, a breakthrough has been noted: scientists from the Samara State Technical University and their neighbours from Ekran have recently proposed a solution to the problem. And a very realistic solution it is, too. They have already patented and are now researching a system to prevent accidental collisions of aircraft and helicopters with mountainous terrain. Experts from the International Science and Technology Centre have placed information on this development on their website, in the Promising Research section.

The essence of this solution is that the scientists were able to overcome the so-called “paradox of mountainous terrain”, where a Doppler shift of the frequency of the total signal (dependence of the frequency of the radio signal on the speed of its source) at the output of the radar is identical both in flight over a mountain slope and in flight over a flat terrain. Leaving to one side the technical and theoretical explanations of this phenomenon, we shall note only that the authors from Samara have devised a way to overcome this paradox and they have been able in one device to use two methods to determine the spatial-temporal parameters of the aircraft – the impulse radar parameter and the Doppler parameter. A special computer with specially developed software enables the analysis of these data, the detection of the mountain slope accordant to the course of the aircraft, evaluation of the steepness of the slope and the distance remaining to it. In other words – this is the recognition, to a high degree of probability, of a natural obstacle and the instantaneous warning of the pilot of the fact or the issuing of a command to alter the aircraft’s course.

“It should be said that our team, specialists from the Samara State Technical University and Ekran previously fulfilled a similar project, and successfully, too,” explains a project participant and Head of the Research and Experimental Department of Research Institute Ekran, Yuri Golubev. “We developed a system to prevent the collision of automobiles, travelling in a string, in conditions of very poor visibility, including at night in blackout conditions. We also developed radar for automobiles that informs the driver of the critical distance to the car travelling in front, with account of the absolute speed of travel, speed of convergence and the condition of the road. Of course, with aircraft the speeds are different, but we know how to make this declared system. And we already have the required experience, and the technical and theoretical run of work. The matter is now down to financing.

Andrew Vakhliaev | alfa
Further information:
http://www.istc.ru
http://tech-db.istc.ru/ISTC/sc.nsf/events/flights-into-the-mountains

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>