Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European airborne campaign simulates Sentinel imagery over land

25.07.2006
Designing a new satellite mission is always a challenging prospect. Not only is there the huge technical issue of building a spacecraft, but ensuring the eventual data is exactly what users require is also critical to the success of the mission. To this end, a new airborne campaign is being carried out as part of the development procedure for two of ESA's Sentinel missions.

The Sentinel satellite series, which are being developed by ESA in support of the European Global Monitoring for Environment and Security programme (GMES), will meet the needs of the user in a variety of application areas by providing real-time services relating to the land, sea, atmosphere and ice fields. It is imperative that these, as with other Earth Observation missions, yield data with the quality and timeliness that users truly need for their applications.

It is not surprising then, that along with the task of designing and building the satellites, airborne campaigns can play an important role in helping with the development of the mission as they allow satellite data to be simulated long before the actual launch of the mission.

The ESA AgriSAR campaign, which finishes on 25 July, represents an ambitious large-scale attempt to assess the performance of the Sentinel-1 (C-band SAR) and Sentinel-2 (Optical Multi-spectral) for land applications. The campaign was unique in scope and scale. AgriSAR represents one of the few, perhaps the only, land-oriented campaign of its type including frequent airborne SAR coverage during the entire crop-growing season -from sowing to harvest.

The main test site was Demmin, an agricultural site located in Mecklenburg-Vorpommern in North-East Germany, approximately 150 km north of Berlin. The German Aerospace Centre's (DLR) E-SAR system was flown over the Demmin test site more than 14 times between the months of April and July. Weekly in-situ measurements were taken on the ground in selected fields throughout the same period.

In addition to SAR coverage, optical data using the Canadian CASI from ITRES Research and the Spanish AHS from the National Institute for Aerospace Technology (INTA) were acquired during critical phases of the growing season in June and July. The June acquisitions were extended to include a forest and grassland site in central Netherlands, used by the EU EAGLE project.

In total, over 15 research institutes from Germany, Spain, Italy, Belgium, The Netherlands, Britain, Canada and Denmark participated in the campaign.

"Because the AgriSAR campaign extended through the growing season we will now be able to see how the information from the radar and optical data changes with time as the crops grow and mature - we’ve never been able to do this before," says Irena Hajnsek from DLR, one of the coordinators of the campaign.

"Ultimately, I am convinced that AgriSAR will lead to a better understanding of how to best interpret and retrieve information over land using SAR and optical data, helping ESA with the design and implementation of future SAR and optical Earth Observation missions."

Following the success of the AgriSAR activities, the researchers participating in campaign now face the daunting task of organising and analysing the large quantities of data collected in the air and on the ground over the past few months.

One of the key tasks will be to take the airborne data and use it simulate the Sentinel-1 and Sentinel-2 imagery. This will allow ESA to assess the suitability of Sentinel-1 and Sentinel-2 sensor and mission characteristics for land applications and will be useful for the end-user community to visualise what the future products will look like.

In addition, there will undoubtedly be strong scientific use of the data in developing new methods for retrieving information on soil and vegetation characteristics from SAR and optical images.

A total of 60 people from 15 different institutes in eight different countries were involved in the AgriSAR activity, with around 40 people participating during the intense measurements periods.

Participants included German teams from DLR-HR, DLR-FB, DLR-DFD, ZALF, IG-Demmin and Universities in Munich, Kiel and Jena along with Spanish teams from University of Valencia and INTA, Italian teams from University of Naples and the National Research Council (ISSIA), teams from Canadian ITRES, from Technical University of Denmark, from University of Ghent in Belgium, from University of Canfield in UK and from the International Institute for Geo-Information Science and Earth Observation (ITC) in the Netherlands, along with participants from ESA.

Malcolm Davidson | alfa
Further information:
http://www.esa.int/esaLP/SEMQ4LBUQPE_LPcampaigns_0.html

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>