Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-tech hairdo: New Cornell method gets that natural look in computer-generated blond hair

21.07.2006
Poets and novelists often describe hair as "shining" or "shimmering." Dark hair has a "sheen"; blond hair "glows." All this comes about because of the complex scattering of incident light off of individual hairs and from one hair to another.

Reproducing this effect in computer graphics has always been a challenge. Computers can create three-dimensional structures resembling hair, but the process of "rendering," in which the computer figures out how light will be reflected from those structures to create an image, requires complex calculations that take into account the scattering between hairs. Current methods use approximations that work well for dark hair and passably for brown, but computer-generated blondes still don't look like they're having more fun.


Marschner lab/Cornell University

On the left, a computer-generated image of blond hair with only direct illumination. At right, the same image rendered with the new algorithm that takes into account the multiple scattering of light through the hair. Direct illumination catches the highlights but fails to show the true color. Copyright © Cornell University

But now Cornell researchers have developed a new and much quicker method for rendering hair that promises to make blond (and other light-colored) hair more realistic.

Steve Marschner, Cornell assistant professor of computer science, developed the new method with Cornell graduate student Jonathan Moon, who will present the work at the 2006 SIGGRAPH computer graphics conference in Boston July 30 to Aug. 3.

"The model that's been around since the '80s works for black hair, and a model we introduced in 2003 in collaboration with workers at Stanford gets brown hair right and makes blond hair better," said Marschner, an award-winning computer graphics expert who specializes in making computer graphics more realistic, particularly in animating human beings. "Using that model with our new work provides the first practical method to use physically realistic rendering for blond hair and still get the right color."

The problem is that light traveling through a mass of blond hair is not only reflected off the surfaces of the hairs, but passes through the hairs and emerges in a diffused form, from there to be reflected and transmitted some more.

The only method that can render this perfectly is "path-tracing," in which the computer works backward from each pixel of the image, calculating the path of each ray of light back to the original light source. Since this require hours of calculations, computer artists resort to approximations.

"People do something reasonable for one bounce and then assume it reflects diffusely," Marschner explained. In other words, he said, they assume that hair is opaque. "In light-colored hair it's important to keep track of the hair-to-hair scattering," he said.

Marschner and Moon's algorithm begins by tracing rays from the light source into the hair, using some approximations of the scattering and producing a map of where photons of light can be found throughout the volume of hair. Then it traces a ray from each pixel of the image to a point in the hair and looks at the map to decide how much light should be available there.

The result, in a test rendering of a swatch of blond hair, appears almost identical to a rendering by the laborious path-tracing method. Path tracing for the test required 60 hours of computation, while the new method took only 2.5 hours, the researchers report.

Marschner now plans to look for better ways to generate the geometric model of hair that underlies the rendering and to simulate realistically the way hair moves. "Tools that generate hair generate random strands in space, and it's unclear whether the arrangement is realistic," he explained.

Marschner shared a technical achievement award from the Academy of Motion Picture Arts and Sciences in 2004 for a method of rendering translucent materials, including human skin, which helped to make the character of Gollum in the "Lord of the Rings" films more realistic. His earlier methods for rendering hair helped to create computer-animated versions of Naomi Watts in the arms of the computer-animated gorilla in the 2005 version of "King Kong."

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>