Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Driving nanoscale microelectronics production

MEDEA+ partners are involved in the development of the basic fabrication techniques required for integrated circuits (ICs) to meet the demands for ever smaller electronic systems – from domestic multimedia equipment and effective automotive electronics, through improved medical diagnostic devices to digital cameras and mobile phones. This collaboration between chipmakers, equipment suppliers, research institutes and academia is helping to ensure Europe maintains its global position in microelectronics – enabling European companies to develop a wide range of new equipment. Moreover, receiving the EUREKA label has been significant in bringing these projects to market faster.

Silicon wafer-based complementary metal oxide semiconductor (CMOS) technology dominates IC manufacture. Its energy efficiency will continue to make it the technology of choice over the next decade for fabrication of microprocessor and memory chips, as well as for application-specific ICs (ASICs) and complete systems-on-chip (SoCs) devices.

Improving performance

The size of the smallest electronic circuit element has long been expressed in microns, but continuous technology revolution means circuit dimensions are now less than 100 nanometre or 1/10th of a micron – leading to the use of ‘nanoelectronics’ rather than ‘microelectronics’. The classical laws of physics no longer apply at this level, giving away to ‘quantum’ physics, which can provide a dramatic improvement in chip performance.

Several EUREKA projects are contributing to the development of future nanometer CMOS generations. As a result of MEDEA+ work, 90 nm node technologies are already in industrial production. The 65-nm node is reaching the product prototyping stage and first choices for a 45-nm technology are available with work continuing towards full process integration well in line with the International Technology Roadmap for Semiconductors (ITRS). “In many cases, products had a 100% first-pass success rate, demonstrating design efficiency and optimum use of technology and manufacturing capabilities,” says Guillermo Bomchil of STMicroelectronics. “And the achievements at 90 nm following the end of the MEDEA+ T201 project set the stage for successful 65-nm prototyping from the end of 2005.”

Looking well ahead

Industrial exploitation of 90-nm CMOS industrial technology is possible based on the rules for industrial fabrication developed in the MEDEA+ T201 CMOS logic 0.1 µm project. In the year following the end of T201, 25 submicron circuits were processed at Crolles 2, at the joint Freescale, Philips Semiconductors and STMicroelectronics pilot 300-mm wafer facility at Grenoble in France. These EUREKA projects have set the scene for the future. MEDEA+ T207 65nm CMOS300 involved new substrate materiels as well as multilevel interconnect metallization for 65nm circuit nodes. The 65-nm process has been established with significant yield improvements and reliability specifications and is now ready for the manufacture of prototype customer chips. The chipmaking partners will be sharing their 65-nm cell libraries and IP blocks are confident about the success of the process to be produced from 2008. And EUREKA projects are already being planned to exploit the results of the EU Sixth Framework Programme (FP6) PULLNANO project that is looking further ahead at the needs for 32-/22-nm scale circuitry.

Catherine Shiels | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>