Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving nanoscale microelectronics production

20.07.2006
MEDEA+ partners are involved in the development of the basic fabrication techniques required for integrated circuits (ICs) to meet the demands for ever smaller electronic systems – from domestic multimedia equipment and effective automotive electronics, through improved medical diagnostic devices to digital cameras and mobile phones. This collaboration between chipmakers, equipment suppliers, research institutes and academia is helping to ensure Europe maintains its global position in microelectronics – enabling European companies to develop a wide range of new equipment. Moreover, receiving the EUREKA label has been significant in bringing these projects to market faster.

Silicon wafer-based complementary metal oxide semiconductor (CMOS) technology dominates IC manufacture. Its energy efficiency will continue to make it the technology of choice over the next decade for fabrication of microprocessor and memory chips, as well as for application-specific ICs (ASICs) and complete systems-on-chip (SoCs) devices.

Improving performance

The size of the smallest electronic circuit element has long been expressed in microns, but continuous technology revolution means circuit dimensions are now less than 100 nanometre or 1/10th of a micron – leading to the use of ‘nanoelectronics’ rather than ‘microelectronics’. The classical laws of physics no longer apply at this level, giving away to ‘quantum’ physics, which can provide a dramatic improvement in chip performance.

Several EUREKA projects are contributing to the development of future nanometer CMOS generations. As a result of MEDEA+ work, 90 nm node technologies are already in industrial production. The 65-nm node is reaching the product prototyping stage and first choices for a 45-nm technology are available with work continuing towards full process integration well in line with the International Technology Roadmap for Semiconductors (ITRS). “In many cases, products had a 100% first-pass success rate, demonstrating design efficiency and optimum use of technology and manufacturing capabilities,” says Guillermo Bomchil of STMicroelectronics. “And the achievements at 90 nm following the end of the MEDEA+ T201 project set the stage for successful 65-nm prototyping from the end of 2005.”

Looking well ahead

Industrial exploitation of 90-nm CMOS industrial technology is possible based on the rules for industrial fabrication developed in the MEDEA+ T201 CMOS logic 0.1 µm project. In the year following the end of T201, 25 submicron circuits were processed at Crolles 2, at the joint Freescale, Philips Semiconductors and STMicroelectronics pilot 300-mm wafer facility at Grenoble in France. These EUREKA projects have set the scene for the future. MEDEA+ T207 65nm CMOS300 involved new substrate materiels as well as multilevel interconnect metallization for 65nm circuit nodes. The 65-nm process has been established with significant yield improvements and reliability specifications and is now ready for the manufacture of prototype customer chips. The chipmaking partners will be sharing their 65-nm cell libraries and IP blocks are confident about the success of the process to be produced from 2008. And EUREKA projects are already being planned to exploit the results of the EU Sixth Framework Programme (FP6) PULLNANO project that is looking further ahead at the needs for 32-/22-nm scale circuitry.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/cmos

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>