Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High altitude broadband is the platform for the future

18.07.2006
A three-year project led by the University of York, which aims to revolutionise broadband communications, reaches its climax later this year.

The CAPANINA project, which uses balloons, airships or unmanned solar-powered planes as high-altitude platforms (HAPs) to relay wireless and optical communications, is due to finish its main research at the end of October.

The consortium behind the project will open York HAP Week, a conference from 23 to 27 October, which will showcase the applications of HAPs, as a springboard for future development in this new high-tech sector.

The CAPANINA Final Exhibition will open the conference by highlighting the achievements of the project, which received funding from the EU under its Broadband-for-All, FP6 programme.

The consortium, drawn from Europe and Japan, has demonstrated how the system could bring low-cost broadband connections to remote areas and even to high-speed trains. It promises data rates 2,000 times faster than via a traditional modem and 100 times faster than today's 'wired' ADSL broadband.

CAPANINA’s Principal Scientific Officer Dr David Grace said: “The potential of the system is huge, with possible applications ranging from communications for disaster management and homeland security, to environmental monitoring and providing broadband for developing countries. So far, we have considered a variety of aerial platforms, including airships, balloons, solar-powered unmanned planes and normal aeroplanes -- the latter will probably be particularly suited to establish communications very swiftly in disaster zones.”

The final experimental flight will use a US-built Unmanned Aerial Vehicle (UAV) and will take place in Arizona days before the York HAPs Week conference at the city’s historic King’s Manor.

Following the CAPANINA event, a HAP Application Symposium led by Dr Jorge Pereira, of the Information Society and Media Directorate-General of the European Commission, will provide a forum for leading experts to illustrate the potential of HAPs to opinion formers and telecommunications providers.

Completing the week, will be the first HAPCOS Workshop, featuring the work of leading researchers from around Europe. It will focus on wireless and optical communications from HAPs, as well as the critically important field of HAP vehicle development.

The Chair of HAPCOS, Tim Tozer, of the University of York’s Department of Electronics, said: “There are a number of projects worldwide that are proving the technology and we want to convince the telecommunications and the wider community of its potential. We are particularly keen to attract aerial vehicle providers.”

The CAPANINA and HAPCOS activities have helped to forge collaborative links with more than 25 countries, including many from Europe, as well as Japan, South Korea, China, Malaysia and USA. They are seeking to develop existing partnerships and forge new ones, with researchers, entrepreneurs, industry, governments as well as end users.

Dr David Grace | alfa
Further information:
http://www.york.ac.uk
http://www.york.ac.uk/admin/presspr/pressreleases/hapweek.htm

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>