Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting your computer to work to fight against malaria in Africa

14.07.2006
While you are sending an email or surfing the web, your computer could be helping to tackle one of Africa’s major humanitarian challenges, malaria. Africa@home, a project conceived and coordinated by CERN , was launched publicly this week. It is recruiting volunteer computers in homes and offices to run a computer-intensive simulation program called MalariaControl.net , developed by researchers at the Swiss Tropical Institute (STI) .

Malaria is responsible for about a million deaths every year in sub-Saharan Africa, and is the single biggest killer in children under five. The MalariaControl.net program is being used to simulate how malaria spreads through Africa. Running the simulations on thousands of volunteer computers will enable researchers to better understand and improve the impact of introducing new treatments.

To install MalariaControl.net, volunteers just need to download the necessary software from the Africa@home website (www.africaathome.org), which will do the scientific calculations in the background, while they are doing something else. The results are regularly returned to a server at the University of Geneva , so that the researchers can evaluate them. Already, in a first test phase over several months with 500 volunteers, Africa@home was able to run simulations equivalent to 150 years of processing time on a single computer.

A key objective of the project was to involve African academic institutions in the development of the software. Thanks to the efforts of NGOs ICVolunteers and Informaticiens sans Frontieres , researchers from the University of Bamako in Mali and the Agence Universitaire de la Francophonie in Bamako and in Yaoundé, Cameroon, were able to join the project team, which was based at CERN. They were funded by the Geneva International Academic Network (GIAN) .

Speaking about the results obtained so far, Prof. Tom Smith of the Swiss Tropical Institute said “Africa@home and volunteer computing really open up new horizons for us scientifically. We have already done more epidemiological modelling in a few months than we could have achieved on our own computer cluster in a few years.”

Dr. Robert Aymar, Director General of CERN, emphasized the importance of knowledge sharing with Africa through such projects “CERN has traditionally been a meeting place for scientists from around the globe, and I am glad that we could host the joint African-European team that launched this project. This underlines our continued commitment to promoting the role of science in the information society, as emphasized at the World Summits on the Information Society in Geneva and Tunis.”

GIAN has just awarded another grant to the Africa@home project, to adapt other applications of significance to Africa to run on volunteer computers. The project will also train technical staff at African universities to manage the servers that run the volunteer computing projects, and help African researchers create their own volunteer computing projects. H.E. Mr. Adama Samassékou, President of ICVolunteers and previously Malian Minister of Education, noted that “getting Africans involved in world-class research like this is a great way to boost the self-esteem of the African scientific community, and putting African institutions at the heart of a worldwide scientific network will be a very concrete step towards bridging the digital divide.”

François Grey | alfa
Further information:
http://www.cern.ch
http://www.africaathome.org

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>