Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fitting Software to Students

13.07.2006
Some students "game" computer-based teaching programs (Intelligent Tutoring Systems, or ITS). New research at the USC Information Sciences Institute is looking at ways of predicting this behavior, and using such predictions to adapt the systems to fit individual student needs. Early results are promising.

The use of ITS and other high-tech learning tools is increasing across the nation, but the effects are often below expectations. "Intelligent tutoring systems can provide effective instruction," writes ISI researcher Carole Beal in a paper that will be presented July 20 at the AAAI 21st National Conference on Artificial Intelligence in Boston, "but learners do not always use such systems effectively."

According to Beal, motivated students interested in course material take to ITS readily, but others will improvise ways to get through without putting in much effort: answering at random, or, quite commonly, abusing the program’s help feature by always asking for help as a way to get the answer without understanding the method.

Limiting access to the help function, for example, effectively defeats this last strategy — but doing so would hinder other students, for whom help is part of the learning experience.

To try to find out which students were most likely to game the system, Beal studied the behavior of a sample of 91 high school students working with a math ITS. Her method integrated three data sources: Students' reports on their own motivation; teachers' reports on the same students’ motivation; and, finally machine records of how the students in question used a web-based high school math tutoring system.

This last consisted of records of how students attacked math problems, and five different patterns emerged. Two of these were clearly unproductive. In one, students clearly selected answers at random, and kept doing so until they found the right answer by chance. In the other, they just started clicking on the help icon immediately after the problem was presented and kept clicking it repeatedly, to push through to the answer, and then repeating the process.

Matching up records with ITS behavior, some correlations were completely unsurprising. Students whose teachers identified them as motivated and who described themselves as motivated to do well in math showed little or no game- the-system behavior.

Other results were less obvious. "Proportionally speaking," Beal reported, “students who described themselves as not good at math, not attracted to math, and not expecting to do well in math were most likely to use the ITS in a way that suggested a genuine effort to learn, by spending time reading the problem, and looking at the help features carefully and thoroughly”.

"The relatively high rate of learning-oriented ITS use by disengaged students suggests that technology-based instruction has potential to reach students who are not doing well with regular classroom instruction…. The opportunity to learn from software may offer an appealing alternative because the student can seek help in private."

But between these poles, a large uncertain area remains. The largest single group of students was those with average motivation. About half of these followed learning strategies, the other half guessed. And the guessers were just as likely to be students whose teachers identified them as having higher math skills.

Within this group, however, one clue emerged. In the questionnaire used to elicit the self-descriptions, those who believed that mathematical skill was intrinsic, something students either had or didn't have, were more likely to guess. Those who thought math skill was something learnable were less likely to.

"This work is only a beginning," says Beal. Her next step will be to use recently developed, sophisticated models of learning based on studies of expert human tutor, who (as Beal writes) accomplish their work "through a repertoire of feedback messages, sophisticated problem selection, and judicious offers of learner control when the learner appears to be flagging."

By refining the ability to determine how a student is using the system -- what their strategy is — Beal believes she and her team will be able to make ITSs more useful not just for the two categories of students using game-the-system strategies, but also for the other three, who seem to be trying to learn.

Beal's collaborators included graduate students Lei Qu and Hyokyeong Lee, both in the USC Viterbi School of Engineering computer science department; the work was funded by a grant from the NSF. Beal also holds an appointment as a research professor at USC's Daniel J. Epstein Department of Industrial & Systems Engineering.

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>