Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Software Tools Detect Bugs By Inferring Programmer's Intentions

The task of debugging huge computer programs can be made faster and easier by using new software tools developed by programming experts at the University of Illinois at Urbana-Champaign.

Computer science professor Yuanyuan Zhou and her students have assembled a suite of software tools that can find and correct bugs by inferring the programmer's intentions. The tools draw from observations on how programmers write code.

"Most bug-detection tools require reproduction of bugs during execution," Zhou said. "The program is slowed down significantly and monitored by these tools, which watch for certain types of abnormal behavior. Most of our tools, however, work by only examining the source code for defects, requiring little effort from programmers."

Copy-pasted code, for example, often appears in large programs. While saving considerable programming effort, copy-pasted code can be the source of numerous bugs. Zhou's copy-paste tool, called CP-Miner, uses data-mining techniques to find copy-pasted code in the program and examine and correct that code for consistent modifications.

CP-Miner has found many bugs in the latest versions of large open-source software used in the information technology industry, Zhou said. CP-Miner is fast and efficient - it can scan 3-4 million lines of code for copy-paste and related bugs in less than 30 minutes.

Large programs also tend to follow many implicit rules and assumptions, so Zhou and her students developed a related tool, called PR-Miner, to detect when those rules have been broken. Like CP-Miner, PR-Miner is based on data-mining techniques.

"First, we mine the source code for patterns, repetitions and correlations that point to implicit programming rules and assumptions," Zhou said. "Then we check that those rules and assumptions have not been violated."

PR-Miner also is very fast and has found many bugs in the latest open-source software. It takes PR-Miner only a few minutes to scan 4 million lines of code.

Not only are their efforts directed toward detecting, diagnosing and fixing bugs, Zhou and her students also are exploring techniques that allow software to survive in the presence of bugs. Rx, for example, is a recovery tool that allows software to survive by treating bugs like allergies.

"If you are allergic to cats, you try to avoid cats," Zhou said. "In much the same way, Rx is avoidance therapy for software failure. If the software fails, Rx rolls the program back to a recent checkpoint, and re-executes the program in a modified environment."

A fourth tool, called Triage, diagnoses software failures at the end-user site. Following a human-like diagnosis protocol, Triage rapidly identifies the nature of the problem and provides valuable input to help programmers quickly understand the failure and fix the bug.

"If something bad happens or the software crashes, Triage's diagnosis protocol will start automatically and quickly suggest a temporary fix until programmers can release a fixing patch," Zhou said.

In addition to being fast and efficient, Zhou's software tools are scalable and can be tailored for specific software programs, including programs running on parallel processors.

The work was funded by the National Science Foundation and the Intel Corp.

James Kloeppel | University of Illinois
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>