Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software simulator improves quality of microwave reheated frozen foods

04.07.2006
The EUREKA E! 2602 MICRODEFROST MODEL project has extended an innovative software-based product development tool for simulating and optimising heating and defrosting processes in microwave ovens – ensuring safer, tastier and more nutritious meals, while stopping food from drying out or discolouring. The key benefit for European industry is that the availability of this tool will enable them to get higher quality products to market faster.

Consumer habits have changed remarkably over the past decade, leading to a massive increase in the ready food market. The technology of reheating frozen food in microwave ovens has therefore come under increasing scrutiny. Uniform heat distribution within the oven and throughout the food itself is therefore an issue of major interest to convenience food producers, appliance manufacturers and food customers alike.

Many variables to control

Several elements affect how food is heated in a microwave oven – from the shape of the packaging to the performance of the oven itself. In particular, multi-component foods such as those that make up ready meals often heat unevenly; this may cause both sensorial and microbiological problems.

“We developed product simulation software to predict microwave heating uniformity,” explains Birgitta Waeppling-Raaholt, specialist in electromagnetics and microwave processing at the Swedish Institute for Food and Biotechnology (SIK), which led the project. “This makes it possible to design the make-up of the food product – geometry, placement of different food components, packaging and so on – much faster and reduces experimental work.”

The MICRODEFROST MODEL software sets out to model how food components are defrosted and heated by microwaves, and how the heat is transferred – including conduction through the different components. Other SIK-developed software then controls heat distribution to make it more uniform. SIK software was used to establish what the important parameters were, and then helped to optimise their values.

As a result of this EUREKA project, it is now possible for convenience food manufacturers to introduce new convenience products more quickly for both the frozen and chilled product sectors. It also provides an important tool to enable microwave manufacturers to optimise their oven designs.

Global first

The MICRODEFROSTMODEL project was started by SIK, which had carried out earlier work on chilled food reheating. It sought help from EUREKA to find funding and partners. “We had worked in similar projects with EUREKA before,” says Raaholt. “We find that EUREKA is very open-minded.”

The Swedish and Polish partners in the four-year MICRODEFROSTMODEL project brought together appliance manufacturers, frozen food producers, and electromagnetics and radioelectronics modelling and software experts to devise a highly effective product development tool that is a world first. The resulting product development tool is already being offered to food companies to strengthen the competitiveness of the European ready food industry by improving end quality and speeding time to market. Potential spin-offs for this project include controlled pasteurisation of potentially infected products through more uniform heat treatment.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/inaction/viewSuccessStory.do?docid=1858126

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>