Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software simulator improves quality of microwave reheated frozen foods

04.07.2006
The EUREKA E! 2602 MICRODEFROST MODEL project has extended an innovative software-based product development tool for simulating and optimising heating and defrosting processes in microwave ovens – ensuring safer, tastier and more nutritious meals, while stopping food from drying out or discolouring. The key benefit for European industry is that the availability of this tool will enable them to get higher quality products to market faster.

Consumer habits have changed remarkably over the past decade, leading to a massive increase in the ready food market. The technology of reheating frozen food in microwave ovens has therefore come under increasing scrutiny. Uniform heat distribution within the oven and throughout the food itself is therefore an issue of major interest to convenience food producers, appliance manufacturers and food customers alike.

Many variables to control

Several elements affect how food is heated in a microwave oven – from the shape of the packaging to the performance of the oven itself. In particular, multi-component foods such as those that make up ready meals often heat unevenly; this may cause both sensorial and microbiological problems.

“We developed product simulation software to predict microwave heating uniformity,” explains Birgitta Waeppling-Raaholt, specialist in electromagnetics and microwave processing at the Swedish Institute for Food and Biotechnology (SIK), which led the project. “This makes it possible to design the make-up of the food product – geometry, placement of different food components, packaging and so on – much faster and reduces experimental work.”

The MICRODEFROST MODEL software sets out to model how food components are defrosted and heated by microwaves, and how the heat is transferred – including conduction through the different components. Other SIK-developed software then controls heat distribution to make it more uniform. SIK software was used to establish what the important parameters were, and then helped to optimise their values.

As a result of this EUREKA project, it is now possible for convenience food manufacturers to introduce new convenience products more quickly for both the frozen and chilled product sectors. It also provides an important tool to enable microwave manufacturers to optimise their oven designs.

Global first

The MICRODEFROSTMODEL project was started by SIK, which had carried out earlier work on chilled food reheating. It sought help from EUREKA to find funding and partners. “We had worked in similar projects with EUREKA before,” says Raaholt. “We find that EUREKA is very open-minded.”

The Swedish and Polish partners in the four-year MICRODEFROSTMODEL project brought together appliance manufacturers, frozen food producers, and electromagnetics and radioelectronics modelling and software experts to devise a highly effective product development tool that is a world first. The resulting product development tool is already being offered to food companies to strengthen the competitiveness of the European ready food industry by improving end quality and speeding time to market. Potential spin-offs for this project include controlled pasteurisation of potentially infected products through more uniform heat treatment.

Catherine Shiels | alfa
Further information:
http://www.eureka.be/inaction/viewSuccessStory.do?docid=1858126

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>