Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When robots learn social skills

22.06.2006
Learning to communicate and adapting our behaviour to the information we receive has been fundamental to human evolution. If machines could do the same the intelligent talking robots of science fiction could become the stuff of science reality, as researchers aim to prove.

Most research into the Artificial Intelligence (AI) that underpins any form of intelligent machine-machine or machine-human interaction has centred on programming the machine with a set of predefined rules. Researchers have, in effect, attempted to build robots or devices with the communication skills of a human adult. That is a shortcut that ignores the evolution of language and the skills gained from social interaction, thereby limiting the ability of AI devices to react to stimuli to within a fixed set of parameters.


But a team of researchers led by the Institute of Cognitive Science and Technology in Italy are taking a new approach to the problem, developing technology to allow machines to evolve their own language from their experiences of interacting with their environment and cooperating with other devices.

“The result is machines that evolve and develop by themselves without human intervention,” explains Stefano Nolfi, the coordinator the ECAgents project, which, with financing from the European Commission’s Future and Emerging Technologies (FET) initiative, has brought together researchers from disciplines as diverse as robotics, linguistics and biology.

The technology, dubbed Embedded and Communicating Agents, has allowed researchers at Sony’s Computer Science Laboratory in France, for example, to add a new level of intelligence to the AIBO dog. Instead of teaching the dog new tricks, the algorithms, design principles and mechanisms developed by the project allow the robotic pet to learn new tricks itself and share its knowledge with others.

“What has been achieved at Sony shows that the technology gives the robot the ability to develop its own language with which to describe its environment and interact with other AIBOs – it sees a ball and it can tell another one where the ball is, if it’s moving and what colour it is, and the other is capable of recognising it,” Nolfi says.

The most important aspect, however, is how it learns to communicate and interact. Whereas we humans use the word ‘ball’ to refer to a ball, the AIBO dogs start from scratch to develop common agreement on a word to use to refer the ball. They also develop the language structures to express, for instance, that the ball is rolling to the left. This, the researchers achieved through instilling their robots with a sense of ‘curiosity.’

Initially programmed to merely recognise stimuli from their sensors, the AIBOs learnt to distinguish between objects and how to interact with them over the course of several hours or days. The curiosity system, or ‘metabrain,’ continually forced the AIBOs to look for new and more challenging tasks, and to give up on activities that did not appear to lead anywhere. This in turn led them to learn how to perform more complex tasks – an indication of an open-ended learning capability much like that of human children.

And also like children the AIBOs initially started babbling aimlessly until two or more settled on a sound to describe an object or aspect of their environment, thus gradually building a lexicon and grammatical rules through which to communicate.

“This is not only important from a robotics and AI perspective, it could also help us understand how language systems arise in humans and animals,” Nolfi notes.

The success of the evolutionary and social learning approach taken to developing AI by the project has also been demonstrated in other trials.

In tests run at the Swiss Federal Institute of Technology in Lausanne hordes of small wheeled robots learnt how to communicate, cooperate and self-organise to perform tasks that would be too complicated for a single robot.

“The technology could lead to robots able to carry out rescue operations by swarming over inaccessible areas to find people,” Nolfi says.

“This is a project with a big impact. We’ve managed to ground AI in reality, in the real world, solving one of the crucial problems to creating truly intelligent and cooperative systems,” he says.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>