Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When robots learn social skills

22.06.2006
Learning to communicate and adapting our behaviour to the information we receive has been fundamental to human evolution. If machines could do the same the intelligent talking robots of science fiction could become the stuff of science reality, as researchers aim to prove.

Most research into the Artificial Intelligence (AI) that underpins any form of intelligent machine-machine or machine-human interaction has centred on programming the machine with a set of predefined rules. Researchers have, in effect, attempted to build robots or devices with the communication skills of a human adult. That is a shortcut that ignores the evolution of language and the skills gained from social interaction, thereby limiting the ability of AI devices to react to stimuli to within a fixed set of parameters.


But a team of researchers led by the Institute of Cognitive Science and Technology in Italy are taking a new approach to the problem, developing technology to allow machines to evolve their own language from their experiences of interacting with their environment and cooperating with other devices.

“The result is machines that evolve and develop by themselves without human intervention,” explains Stefano Nolfi, the coordinator the ECAgents project, which, with financing from the European Commission’s Future and Emerging Technologies (FET) initiative, has brought together researchers from disciplines as diverse as robotics, linguistics and biology.

The technology, dubbed Embedded and Communicating Agents, has allowed researchers at Sony’s Computer Science Laboratory in France, for example, to add a new level of intelligence to the AIBO dog. Instead of teaching the dog new tricks, the algorithms, design principles and mechanisms developed by the project allow the robotic pet to learn new tricks itself and share its knowledge with others.

“What has been achieved at Sony shows that the technology gives the robot the ability to develop its own language with which to describe its environment and interact with other AIBOs – it sees a ball and it can tell another one where the ball is, if it’s moving and what colour it is, and the other is capable of recognising it,” Nolfi says.

The most important aspect, however, is how it learns to communicate and interact. Whereas we humans use the word ‘ball’ to refer to a ball, the AIBO dogs start from scratch to develop common agreement on a word to use to refer the ball. They also develop the language structures to express, for instance, that the ball is rolling to the left. This, the researchers achieved through instilling their robots with a sense of ‘curiosity.’

Initially programmed to merely recognise stimuli from their sensors, the AIBOs learnt to distinguish between objects and how to interact with them over the course of several hours or days. The curiosity system, or ‘metabrain,’ continually forced the AIBOs to look for new and more challenging tasks, and to give up on activities that did not appear to lead anywhere. This in turn led them to learn how to perform more complex tasks – an indication of an open-ended learning capability much like that of human children.

And also like children the AIBOs initially started babbling aimlessly until two or more settled on a sound to describe an object or aspect of their environment, thus gradually building a lexicon and grammatical rules through which to communicate.

“This is not only important from a robotics and AI perspective, it could also help us understand how language systems arise in humans and animals,” Nolfi notes.

The success of the evolutionary and social learning approach taken to developing AI by the project has also been demonstrated in other trials.

In tests run at the Swiss Federal Institute of Technology in Lausanne hordes of small wheeled robots learnt how to communicate, cooperate and self-organise to perform tasks that would be too complicated for a single robot.

“The technology could lead to robots able to carry out rescue operations by swarming over inaccessible areas to find people,” Nolfi says.

“This is a project with a big impact. We’ve managed to ground AI in reality, in the real world, solving one of the crucial problems to creating truly intelligent and cooperative systems,” he says.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>