Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Digital Healthcare Software is used in Pioneering Study of Treatment for Blindness

21.06.2006
An innovative software system developed by Digital Healthcare, a Cambridge company that is the UK’s leading supplier of ophthalmology software, is being used in a pioneering study to monitor the impact of new healthcare treatments in ophthalmology.

In a unique partnership with three image reading centres located in The Queen’s University of Belfast, St Paul’s Eye Unit, Liverpool and Moorfields Eye Hospital, London, the company’s Clinical Trials iP software will enable healthcare staff to analyse digital images of the retina gathered from some 3,000 patients per annum, over the next four years, in 50 regional eye units across the UK.

The results from this study will be used to measure the effectiveness of a specialist drug and laser therapy (Verteporfin Photodynamic Therapy) as a treatment for patients suffering from “wet” age-related macular degeneration (AMD), a disease of the retina that is a common cause of blindness. The nationwide study could also serve as a model for future programmes to monitor healthcare treatments.

The Clinical Trials iP software is a sophisticated electronic platform that combines the capacity to handle the huge volumes of imaging data captured to diagnose and treat “wet” AMD, with an electronic patient care management system. After reading centre staff have used the system to import thousands of retinal images, they can electronically transfer the data between a network of computers for grading using a secure telemessaging facility.

Professor Usha Chakravarthy of the Centre for Vision Science at Queen’s University, Belfast and Ophthalmic Consultant at Belfast’s Royal Hospitals, is one of the lead clinical investigators involved in delivering treatment for patients with “wet” AMD.

Professor Chakravarthy said: “This is a defining moment in the introduction of new technologies in that it will provide robust findings on the long-term benefits of verteporfin photodynamic therapy for the “wet” form of age-related macular degeneration, which afflicts several thousand older adults annually.”

So far, over 5,000 images or angiograms from over 3,000 patients have been submitted in digital and film formats from the 50 regional treatment centres to the Central Angiographic Resource Facility (CARF) in Belfast and imported into Digital Healthcare’s Clinical Trials iP software.

Dr Liam Patton of Queen’s University, Belfast and a manager at the CARF, said: “A key strength of the Clinical Trials iP software is that it enables images captured from a variety of sources to be standardised and graded on a common platform. We can accept angiograms from almost any ophthalmic imaging system in use in the UK, and we also import film images. We can then use a secure electronic telemessaging system to transfer the images to the Reading Centres for grading.

The software has eliminated the need to use paper-based systems previously used for this type of work. During the grading process there are a multitude of tools available to assist grading staff in arriving at their decisions, including grids, circles and measurement tools so that graders can manipulate and compare images. The software also includes a built-in facility to highlight “urgent” patients so that they can be promptly graded and their results transferred to a treatment centre for further investigations.”

Nick Nightingale, Applications Director at Digital Healthcare, said: “We are delighted to have been selected to provide the software for this groundbreaking study that will generate vital information to improve treatments for patients suffering from AMD, and which could also serve as a model for the assessment of new healthcare technologies.

We have worked closely with the CARF and the three reading centres to test and perfect the Clinical Trials iP software. Healthcare staff now have a fully-automated, electronic information system that can perform a multitude of tasks from importing a range of images, distributing them for grading and managing the selection and quality assurance processes, right through to sending the data results to the Department of Public Health Policy in London.”

Margaret Henry | alfa
Further information:
http://www.digital-healthcare.com
http://www.oxin.co.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>