Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop system to thwart unwanted video and still photography

20.06.2006
No pictures please

Researchers at the Georgia Institute of Technology have completed a prototype device that can block digital-camera function in a given area. Commercial versions of the technology could be used to stymie unwanted use of video or still cameras.

The prototype device, produced by a team in the Interactive and Intelligent Computing division of the Georgia Tech College of Computing (COC), uses off-the-shelf equipment – camera-mounted sensors, lighting equipment, a projector and a computer -- to scan for, find and neutralize digital cameras. The system works by looking for the reflectivity and shape of the image-producing sensors used in digital cameras.

Gregory Abowd, an associate professor leading the project, says the new camera-neutralizing technology shows commercial promise in two principal fields – protecting limited areas against clandestine photography or stopping video copying in larger areas such as theaters.

"We're at a point right now where the prototype we have developed could lead to products for markets that have a small, critical area to protect," Abowd said. "Then we're also looking to do additional research that could increase the protected area for one of our more interesting clients, the motion picture industry."

Abowd said the small-area product could prevent espionage photography in government buildings, industrial settings or trade shows. It could also be used in business settings -- for instance, to stop amateur photography where shopping-mall-Santa pictures are being taken.

James Clawson, a research technician on Abowd's prototype team, said preventing movie copying could be a major application for camera-blocking technology.

"Movie piracy is a $3 billion-a-year problem," Clawson maintains -- a problem said to be especially acute in Asia. "If someone videotapes a movie in a theater and then puts it up on the web that night or burns half a million copies to sell on the street – then the movie industry has lost a lot of in-theater revenue."

Moreover, movie theaters are likely to be a good setting for camera-blocking technology, said Jay Summet, a research assistant who is also working on the prototype. A camera's image sensor -- called a CCD -- is retroreflective, which means it sends light back directly to its origin rather than scattering it. Retroreflections would probably make it relatively easy to detect and identify video cameras in a darkened theater.

The current prototype uses visible light and two cameras to find CCDs, but a future commercial system might use invisible infrared lasers and photo-detecting transistors to scan for contraband cameras. Once such a system found a suspicious spot, it would feed information on the reflection's properties to a computer for a determination.

"The biggest problem is making sure we don't get false positives from, say, a large shiny earring," said Summet. "We need to make our system work well enough so that it can find a dot, then test to see if it's reflective, then see if it's retroreflective, and then test to see if it's the right shape."

Once a scanning laser and photodetector located a video camera, the system would flash a thin beam of visible white light directly at the CCD. This beam – possibly a laser in a commercial version – would overwhelm the target camera with light, rendering recorded video unusable.

Researchers say that energy levels used to neutralize cameras would be low enough to preclude any health risks to the operator.

Still camera neutralization in small areas also shows near-term commercial promise, Abowd said. Despite ambient light levels far higher than in a theater, still cameras at a trade show or a mall should be fairly easy to detect, he said. That's because image sensors in most cell phones and digital cameras are placed close to the lens, making them easier to spot than the deeper-set sensors of video cameras.

Camera neutralization's potential has helped bring it under the wing of VentureLab, a Georgia Tech group that assists fledgling companies through the critical feasibility and first-funding phases. Operating under the name DominINC, Abowd's company has already received a Phase 1 grant from the Georgia Research Alliance (GRA) with VentureLab assistance.

Abowd said that funding availability will likely decide which technology -- small- or large-area -- will be developed first. DominINC will apply soon for GRA Phase 2 money, Abowd said. Those funds would be used to aid anti-piracy product development, as would any funding coming from the film industry.

Other potential funding, from industry and elsewhere, would likely be used to develop anti-espionage small-area applications.

Stephen Fleming, Georgia Tech's chief commercialization officer, said motion-picture groups are actively looking for technology to foil piracy. Movie distributors might even promote camera-neutralizing systems by refusing to send films to theaters that don't install anti-piracy systems.

There are some caveats, according to Summet. Current camera-neutralizing technology may never work against single-lens-reflex cameras, which use a folding-mirror viewing system that effectively masks its CCD except when a photo is actually being taken. Moreover, anti-digital techniques don't work on conventional film cameras because they have no image sensor.

Good computer analysis will be the heart of effective camera blocking, Summet believes.

"Most of the major work that we have left involves algorithmic development," he said. "False positives will eliminated by making a system with fast, efficient computing."

Rick Robinson | EurekAlert!
Further information:
http://www.innovate.gatech.edu

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>