Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers develop fail-safe techniques for erasing magnetic storage media

Protecting sensitive data
After a U.S. intelligence-gathering aircraft was involved in a mid-air collision off the coast of China four years ago, the crew was unable to erase sensitive information from magnetic data storage systems before making an emergency landing in Chinese territory.

That event underscored the need for simple techniques to provide fail-safe destruction of sensitive data aboard such aircraft. Working with defense contractor L-3 Communications Corp., scientists at the Georgia Tech Research Institute (GTRI) have developed a series of prototype systems that use special high-strength permanent magnets to quickly erase a wide variety of storage media.

Developed so far for VHS tapes, floppy drives, data cassettes, and small computer hard drives, the techniques could also have commercial applications for banking, human resource and other industries that must also protect sensitive information.

"This is a very challenging problem," said Michael Knotts, a research scientist in the GTRI's Signature Technology Laboratory. "We had to verify that the data would be beyond all possible recovery even with unlimited budget and unlimited time. Commercial devices on the market for data erasure just couldn't fill the bill, because they were magnetically too weak, they were physically too large and heavy, or they didn't meet stringent air safety standards."

During the project, the researchers developed testing procedures that use a magnetic force microscope (MFM) – a variation on the atomic-force microscope (AFM) more commonly used to provide detailed images of surfaces at the nanometer scale. The MFM mapped the very small magnetic perturbations created by data stored on the media, helping determine how well data patterns had been destroyed.

"If you erase the data by whatever means, you should see a surface devoid of any specific pattern or periodicity," Knotts explained. "Our goal was to see a random distribution of magnetization that would indicate a clean disk."

During the three-year project, Knotts and collaborators Don Creyts, Dave Maybury, Candy Ekangaki, and Tedd Toler explored a broad range of possible destruction techniques, including burning diskettes with heat-generating thermite materials, crushing drives in presses and chemically destroying the media.

The researchers had to select techniques and equipment that would:

  • Be light enough for aircraft use and operate independently of aircraft electrical systems;
  • Be mechanically simple to ensure reliable operation;
  • Produce no harmful gases or flame;
  • Provide mechanisms to prevent inadvertent erasure.

During their first year of work, the researchers learned that data could remain on diskettes that had been subjected to high heat, and had to abandon thermal destruction techniques because of the fire and harmful gases they generated. That left only magnetic techniques.

In developing techniques for complete erasure, the researchers first had to learn how different data storage drives operate, then assess the magnetic field levels necessary for complete erasure. To do that, they obtained a number of commercially-available micro-drives, cut the media into sections, subjected them to varying magnetic fields, and then tested the sections with the MFM.

"We had to understand how the data is laid out on the disk so we could know where to look for the patterns, and we had to do a lot of measurements to determine exactly what kind of magnetic field is needed to destroy all data," said Knotts. "We had to do a lot of destructive testing to determine that, and our lab is littered with the carcasses of dead hard drives to prove it."

Producing a magnetic field sufficient to destroy data patterns required the use of neodymium iron-boron magnets custom-designed for the project and special pole pieces made of esoteric cobalt alloys. The magnets, which weigh as much as 125 pounds, had to produce fields sufficient to penetrate metallic housings that surround some drives.

"We developed models for magnetic circuits that we could run through optimization codes to design the best shape to get the field that we needed," Knotts said. "It takes quite a magnetic field to get through the steel enclosures on some of the drives. We are producing magnetic fields comparable to those used in magnetic resonance imaging equipment, so these are not your ordinary refrigerator magnets."

Mechanically, the researchers faced challenges in reliably moving data storage devices through the magnetic fields. In some cases, aircraft crews would simply insert removable media into a motorized mechanism that pushes them past the magnets, while for other media, crews would have to twist a knob and pull drives out of their enclosures and through a magnetic field. To prevent accidental erasure, each technique requires several deliberate steps.

With success in erasing removable media and small hard drives, the researchers are moving onto a final phase of the project, which will involve large computer hard drives partially encased in thick steel caddies.

Beyond Department of Defense applications, the magnetic erasure techniques could have applications to the commercial world, where banks, human resource agencies and other organizations must ensure complete destruction of data in computer equipment being discarded.

Knotts admits he'll be a bit sad to see the project end.

"This was certainly an unusual project," he said. "It's not often that we get paid to crush equipment in presses, blow things up and set off fires in microwave ovens."

John Toon | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>