Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop fail-safe techniques for erasing magnetic storage media

14.06.2006
Protecting sensitive data
After a U.S. intelligence-gathering aircraft was involved in a mid-air collision off the coast of China four years ago, the crew was unable to erase sensitive information from magnetic data storage systems before making an emergency landing in Chinese territory.

That event underscored the need for simple techniques to provide fail-safe destruction of sensitive data aboard such aircraft. Working with defense contractor L-3 Communications Corp., scientists at the Georgia Tech Research Institute (GTRI) have developed a series of prototype systems that use special high-strength permanent magnets to quickly erase a wide variety of storage media.

Developed so far for VHS tapes, floppy drives, data cassettes, and small computer hard drives, the techniques could also have commercial applications for banking, human resource and other industries that must also protect sensitive information.

"This is a very challenging problem," said Michael Knotts, a research scientist in the GTRI's Signature Technology Laboratory. "We had to verify that the data would be beyond all possible recovery even with unlimited budget and unlimited time. Commercial devices on the market for data erasure just couldn't fill the bill, because they were magnetically too weak, they were physically too large and heavy, or they didn't meet stringent air safety standards."

During the project, the researchers developed testing procedures that use a magnetic force microscope (MFM) – a variation on the atomic-force microscope (AFM) more commonly used to provide detailed images of surfaces at the nanometer scale. The MFM mapped the very small magnetic perturbations created by data stored on the media, helping determine how well data patterns had been destroyed.

"If you erase the data by whatever means, you should see a surface devoid of any specific pattern or periodicity," Knotts explained. "Our goal was to see a random distribution of magnetization that would indicate a clean disk."

During the three-year project, Knotts and collaborators Don Creyts, Dave Maybury, Candy Ekangaki, and Tedd Toler explored a broad range of possible destruction techniques, including burning diskettes with heat-generating thermite materials, crushing drives in presses and chemically destroying the media.

The researchers had to select techniques and equipment that would:

  • Be light enough for aircraft use and operate independently of aircraft electrical systems;
  • Be mechanically simple to ensure reliable operation;
  • Produce no harmful gases or flame;
  • Provide mechanisms to prevent inadvertent erasure.

During their first year of work, the researchers learned that data could remain on diskettes that had been subjected to high heat, and had to abandon thermal destruction techniques because of the fire and harmful gases they generated. That left only magnetic techniques.

In developing techniques for complete erasure, the researchers first had to learn how different data storage drives operate, then assess the magnetic field levels necessary for complete erasure. To do that, they obtained a number of commercially-available micro-drives, cut the media into sections, subjected them to varying magnetic fields, and then tested the sections with the MFM.

"We had to understand how the data is laid out on the disk so we could know where to look for the patterns, and we had to do a lot of measurements to determine exactly what kind of magnetic field is needed to destroy all data," said Knotts. "We had to do a lot of destructive testing to determine that, and our lab is littered with the carcasses of dead hard drives to prove it."

Producing a magnetic field sufficient to destroy data patterns required the use of neodymium iron-boron magnets custom-designed for the project and special pole pieces made of esoteric cobalt alloys. The magnets, which weigh as much as 125 pounds, had to produce fields sufficient to penetrate metallic housings that surround some drives.

"We developed models for magnetic circuits that we could run through optimization codes to design the best shape to get the field that we needed," Knotts said. "It takes quite a magnetic field to get through the steel enclosures on some of the drives. We are producing magnetic fields comparable to those used in magnetic resonance imaging equipment, so these are not your ordinary refrigerator magnets."

Mechanically, the researchers faced challenges in reliably moving data storage devices through the magnetic fields. In some cases, aircraft crews would simply insert removable media into a motorized mechanism that pushes them past the magnets, while for other media, crews would have to twist a knob and pull drives out of their enclosures and through a magnetic field. To prevent accidental erasure, each technique requires several deliberate steps.

With success in erasing removable media and small hard drives, the researchers are moving onto a final phase of the project, which will involve large computer hard drives partially encased in thick steel caddies.

Beyond Department of Defense applications, the magnetic erasure techniques could have applications to the commercial world, where banks, human resource agencies and other organizations must ensure complete destruction of data in computer equipment being discarded.

Knotts admits he'll be a bit sad to see the project end.

"This was certainly an unusual project," he said. "It's not often that we get paid to crush equipment in presses, blow things up and set off fires in microwave ovens."

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>