Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Project

24.05.2006


A collaboration between the University of Leicester Space Research Centre and the Indian Space Research Organisation (ISRO) is about to reach a new stage as hardware built at the Tata Institute of Fundamental Research in Mumbai is sent to Leicester for integration into an x-ray camera.



The camera will eventually be returned to India for installation into Astrosat, India’s first national astronomy satellite. The five instruments in Astrosat’s payload will observe exotic objects and phenomena such as black holes, neutron stars, and active galaxies at a number of different wavelengths simultaneously, from the ultraviolet band to energetic x-rays.

Leicester is providing the expertise and support to build the CCD camera for the Soft X-ray Telescope (SXT) on Astrosat.


Guy Peters, Astrosat Project Manager UK at the University of Leicester’s Space Research Centre, explained the significance of the mission. "Each of Astrosat’s five instruments is looking at different regions of the electromagnetic spectrum which allows simultaneous measurements to be taken across a wide range of energies."

ISRO approached the University of Leicester Space Research Centre to undertake the SXT camera development because of its acclaimed track record in spacecraft design in missions such as Swift and XMM-Newton and the experience gained from its laboratory programmes leading to CCD camera designs with high resolution and sensitivity and low mass.

While the Tata Institute of Fundamental Research has built the main telescope body and mirror Leicester has provided the camera, supported the project through consultancy and will calibrate and integrate the camera at the Space Research Centre.

This sharing of experience is a significant part of the Astrosat project, Guy Peters feels. "Here in Leicester we are a young team gaining experience on a major project. Astrosat has provided a really exciting opportunity for the team."

Guy has found Astrosat a fascinating project, not just scientifically but culturally. "Although on paper we seem to work the same way, the operation in India has a very relaxed feeling, less pressured than working with other agencies, and yet things can get done just as quickly."

Due to be launched in 2008, Astrosat is well through its development phase and has just completed a highly successful preliminary design review, one of the key milestones in any instrument’s life. Over the next eight months details will be finalised and Guy Peters hopes that the Leicester team will receive funding from the British Council to enable it to continue to support the mission after the satellite’s launch.

He has recently returned from a visit to India with Leicester’s Chief Engineer, Tim Stevenson, for an engineering and management review. This will be followed in a few months by a Leicester science team, while a delegation from India will come to Leicester in the summer.

"Leicester’s involvement with Astrosat is a really important thing, not just for the University, but for Leicester as a whole," Guy said. "It is a credit to the University that they have recognised it as a worthwhile investment. We should flag it up as something the whole city can be proud of."

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>