Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VTT replaces quartz with silicon in timing circuit

23.05.2006


Miniaturised and wireless electronics step in new age

Technical Research Centre of Finland VTT, in co-operation with VTI technologies Oy, has developed a new timer circuit that is one hundred times smaller than the traditional quartz crystal. The substitution of quartz for silicon opens up totally new possibilities for reducing the size of electronic devices and for improving their performance. The device is especially helpful in the realization of wireless electronics. For example, it is possible to install buttons, biometric detectors and sharp clocks into smart cards that are thinner than anything seen before.

A reference of time - a clock - is an integral part of our life, for example, in helping us to synchronize our lives with the surrounding society.



Quite similarly, a reference of time or frequency is needed practically in all electronic devices to allow coherent communication within the device and with the outside world.

For example, in radios and cell phones, the frequency reference enables the reception of exactly the right signal from the fizzling chaos of radio waves.

The central problem of quartz resonators is their large size in comparison with the highly miniaturised integrated circuits. The situation is like having 100 kilometres tall giants serving a single purpose, time, for a city of some million inhabitants.

With size less than one square millimeter the silicon microresonator demonstrated by VTT and VTI enables combining it with integrated circuits in a way not possible with quartz crystals.

Wide applications

The new microresonator foreruns in the way to intelligent sub-millimetre electronics and responds to today’s challenge for further miniaturising and increasing functionality of consumer electronics where radios will replace cables. This cannot be done just by shrinking integrated circuits alone but miniaturisation of supporting components is also required.

Furthermore, the microresonator opens up e.g. entire new ways to develop and implement devices for wireless local area networks like miniature radio receivers. These will find their ways to everyday objects like clothes, shoes, earphones and eye glasses.

Microresonators are also needed in other devices used for wireless communication and data processing. Smart cards, for instance, will become thinner and more intelligent and they do not need any reader. The card may also have a display and biometric identification sensor.

Intelligent electronics will be everywhere; in homes, public spaces, roads, portable equipment, health care, identification and payment.

Manufactured in Finland

Quartz crystal resonators are perhaps the second most important component, right after integrated circuit, in any electrical equipment. The annual world-wide sales of quartz resonators is over a 4 billion units, worth of USD 3 billion (EUR 2.5 billion).

There are already three small start-up companies that have launched their first silicon oscillators. Stability-wise VTT and VTI are the technology leaders.

At first stage, silicon resonators will replace quartz resonators in products where size really matters. But in the long run evolution of quartz technology can’t compete with silicon technology.

VTI Technologies, a leading silicon accelerometer and pressure sensor manufacturer, is reviewing the business potential of silicon resonators. VTI’s sensors are widely applied in automotive, medical and sports applications.

If business partners are found VTI is planning to start manufacturing of silicon resonators in Finland. In this, the company can utilise existing know-how and manufacturing lines. VTI is ready for large volume. Currently the annual sensor production is 23 million units and can be expanded to more than 100 millions.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>