Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beaming the internet across Europe: new project aims to connect buildings using antennae not wires

11.05.2006


Developing ways to connect homes and businesses to the internet without using wires is the aim of a new project announced today. The research at Imperial College London could help users across Europe to access the internet, by removing the need to lay out connecting phone lines or other cables between the public internet and a user’s building or network.



At present, although it is possible to make use of wireless technology within homes and office buildings, the connection from these buildings back to the public internet requires wires. External routers connect local area networks to the public internet through strings of phone lines, ’T1’ lines or optical fibres.

The new project, which sees Imperial working with academic and industrial partners across Europe, aims to use wireless links with advanced antennae instead of such wires to beam a radio signal between buildings’ local area networks and external routers. A mesh of routers beaming data between them would form a wireless network which would relay data to and from the public internet.


The use of wireless technologies has the potential to greatly increase access to the internet for users in urban areas and also in remote areas where it might be costly or physically difficult to lay out wires. It is also anticipated that a network using multiple-input-multiple-output (MIMO) antennae would be able to carry data at very high speeds. In comparison, present wired technologies such as ADSL and T1 lines can carry a more limited amount of data than the wireless network, and optical fibres can carry high amounts of data but are relatively expensive.

Issues that the project will be tackling include making certain that networking technologies can work efficiently with the MIMO antennae design, ensuring that the electro-magnetic waves from the antennae head in precisely the right direction and minimising any radio interference that these waves might cause.

Professor Kin Leung, project coordinator from both the Department of Electrical and Electronic Engineering and the Department of Computing at Imperial College, said: "The internet has become an integral part of our daily life and continues to grow. Instead of relying on the use of traditional wired lines, we need to explore alternative, efficient technologies to connect users in homes and office buildings to the internet.

"Our challenge here is to invent an integrated set of new antennae and wireless networking technologies that can work together efficiently to meet such needs. We are hoping that we could see this technology in use within the next five to ten years," he added.

The project, named MEMBRANE (Multi-Element Multihop Backhaul Reconfigurable Antenna Network), is expected to run until June 2008, by which time the project team are hopeful they will have built a prototype of the key elements of the new wireless network.

The Imperial researchers are working on the project alongside partners from Lucent Technologies, ETH Zurich, Intel, CEFRIEL, Intracom and Telefonica. The MEMBRANE project is part-funded with €2.8 million by the European Community’s 6th Framework Programme.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>