Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beaming the internet across Europe: new project aims to connect buildings using antennae not wires

11.05.2006


Developing ways to connect homes and businesses to the internet without using wires is the aim of a new project announced today. The research at Imperial College London could help users across Europe to access the internet, by removing the need to lay out connecting phone lines or other cables between the public internet and a user’s building or network.



At present, although it is possible to make use of wireless technology within homes and office buildings, the connection from these buildings back to the public internet requires wires. External routers connect local area networks to the public internet through strings of phone lines, ’T1’ lines or optical fibres.

The new project, which sees Imperial working with academic and industrial partners across Europe, aims to use wireless links with advanced antennae instead of such wires to beam a radio signal between buildings’ local area networks and external routers. A mesh of routers beaming data between them would form a wireless network which would relay data to and from the public internet.


The use of wireless technologies has the potential to greatly increase access to the internet for users in urban areas and also in remote areas where it might be costly or physically difficult to lay out wires. It is also anticipated that a network using multiple-input-multiple-output (MIMO) antennae would be able to carry data at very high speeds. In comparison, present wired technologies such as ADSL and T1 lines can carry a more limited amount of data than the wireless network, and optical fibres can carry high amounts of data but are relatively expensive.

Issues that the project will be tackling include making certain that networking technologies can work efficiently with the MIMO antennae design, ensuring that the electro-magnetic waves from the antennae head in precisely the right direction and minimising any radio interference that these waves might cause.

Professor Kin Leung, project coordinator from both the Department of Electrical and Electronic Engineering and the Department of Computing at Imperial College, said: "The internet has become an integral part of our daily life and continues to grow. Instead of relying on the use of traditional wired lines, we need to explore alternative, efficient technologies to connect users in homes and office buildings to the internet.

"Our challenge here is to invent an integrated set of new antennae and wireless networking technologies that can work together efficiently to meet such needs. We are hoping that we could see this technology in use within the next five to ten years," he added.

The project, named MEMBRANE (Multi-Element Multihop Backhaul Reconfigurable Antenna Network), is expected to run until June 2008, by which time the project team are hopeful they will have built a prototype of the key elements of the new wireless network.

The Imperial researchers are working on the project alongside partners from Lucent Technologies, ETH Zurich, Intel, CEFRIEL, Intracom and Telefonica. The MEMBRANE project is part-funded with €2.8 million by the European Community’s 6th Framework Programme.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>