Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beaming the internet across Europe: new project aims to connect buildings using antennae not wires


Developing ways to connect homes and businesses to the internet without using wires is the aim of a new project announced today. The research at Imperial College London could help users across Europe to access the internet, by removing the need to lay out connecting phone lines or other cables between the public internet and a user’s building or network.

At present, although it is possible to make use of wireless technology within homes and office buildings, the connection from these buildings back to the public internet requires wires. External routers connect local area networks to the public internet through strings of phone lines, ’T1’ lines or optical fibres.

The new project, which sees Imperial working with academic and industrial partners across Europe, aims to use wireless links with advanced antennae instead of such wires to beam a radio signal between buildings’ local area networks and external routers. A mesh of routers beaming data between them would form a wireless network which would relay data to and from the public internet.

The use of wireless technologies has the potential to greatly increase access to the internet for users in urban areas and also in remote areas where it might be costly or physically difficult to lay out wires. It is also anticipated that a network using multiple-input-multiple-output (MIMO) antennae would be able to carry data at very high speeds. In comparison, present wired technologies such as ADSL and T1 lines can carry a more limited amount of data than the wireless network, and optical fibres can carry high amounts of data but are relatively expensive.

Issues that the project will be tackling include making certain that networking technologies can work efficiently with the MIMO antennae design, ensuring that the electro-magnetic waves from the antennae head in precisely the right direction and minimising any radio interference that these waves might cause.

Professor Kin Leung, project coordinator from both the Department of Electrical and Electronic Engineering and the Department of Computing at Imperial College, said: "The internet has become an integral part of our daily life and continues to grow. Instead of relying on the use of traditional wired lines, we need to explore alternative, efficient technologies to connect users in homes and office buildings to the internet.

"Our challenge here is to invent an integrated set of new antennae and wireless networking technologies that can work together efficiently to meet such needs. We are hoping that we could see this technology in use within the next five to ten years," he added.

The project, named MEMBRANE (Multi-Element Multihop Backhaul Reconfigurable Antenna Network), is expected to run until June 2008, by which time the project team are hopeful they will have built a prototype of the key elements of the new wireless network.

The Imperial researchers are working on the project alongside partners from Lucent Technologies, ETH Zurich, Intel, CEFRIEL, Intracom and Telefonica. The MEMBRANE project is part-funded with €2.8 million by the European Community’s 6th Framework Programme.

Laura Gallagher | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>