Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop ENDEAVOUR - a computer program for identifying disease genes

09.05.2006


Genes are the underlying cause of a large number of disorders. But identifying and studying these genes more closely is a major challenge for biotechnologists worldwide. Researchers from ESAT-SCD (Engineering Sciences) and the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Catholic University of Leuven have now developed ENDEAVOUR: a computer program that compiles and processes data from a variety of databases and identifies the genes that play a key role in the origin of a disorder. ENDEAVOUR will undoubtedly become an indispensable tool for identifying disease genes. In testing their program, the researchers have succeeded in identifying a gene that plays a major role in the development of ‘DiGeorge syndrome’.



Seeing the forest for the trees...

Genes play an important role in a large number of disorders - prime examples are Alzheimer’s disease and cancer. A good understanding of these genes is essential in the quest for diagnoses and treatments. But identifying these ‘key genes’ among thousands of genes is an enormous challenge. Years of effort by scientists all over the world have led to a vast amount of data, but analyzing it is complex. These days, scientists are not only concerned with generating new data but also with deciphering the existing data, and thus being able to see the forest for the trees.


ENDEAVOUR

To decipher these genetic data, scientists have developed the computer program ENDEAVOUR. Drawing on various databases, ENDEAVOUR gathers all the data about genes that are known to be connected with a disease or a biological process and integrates these data into a mathematical model. With the aid of this model, scientists study the similarities between the ‘known genes’ and genes whose biological function is not yet known. ENDEAVOUR then indicates whether these genes might possibly underlie a certain disorder.

Testing the method

ENDEAVOUR has been fine-tuned and tested in the laboratory. The researchers took the data for a number of known genes from the mathematical model and then entered the genes as ‘unknown’ into ENDEAVOUR. For the majority of the syndromes tested (such as Alzheimer’s disease, leukemia, colon cancer, and Parkinson’s disease), ENDEAVOUR found the underlying genes and thus proved its validity.

Zebra fish enter the fray

As an extra validation of the program, the researchers used ENDEAVOUR to look for new disease genes that underlie hereditary disorders. Among other things, they wanted to identify a new gene that can be correlated with DiGeorge syndrome - a genetic disorder that affects more than 1 in 4000 newborn children. The infants have deformed features and blood vessel abnormalities in the heart. ENDEAVOUR identified one gene as a possible disease gene: YPEL1.

To confirm this mathematical prediction biologically, the researchers used the zebra fish as model system to replicate the disease. They studied zebra fish that could not produce the zebra fish YPEL1 gene. The embryos of these fish showed several abnormalities that are comparable to the symptoms of DiGeorge syndrome. This study provided the ultimate proof that ENDEAVOUR is a very useful tool for identifying new disease genes.

Identifying genes quickly

ENDEAVOUR can accelerate research into a number of disorders by providing the tools for rapidly identifying genes that play a role in the disorders.

Combining forces

Collaboration among several different research groups is not always easy to achieve, but it does usually lead to significant added value. The publication resulting from this research clearly demonstrates the importance of constructive collaboration in arriving at innovative results. Indeed, this is not the result of a single group’s research, but of the collaboration of four different research groups. The development and validation of a program such as ENDEAVOUR is possible only through the combination of a variety of skills and expertise.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>