Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop ENDEAVOUR - a computer program for identifying disease genes

09.05.2006


Genes are the underlying cause of a large number of disorders. But identifying and studying these genes more closely is a major challenge for biotechnologists worldwide. Researchers from ESAT-SCD (Engineering Sciences) and the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Catholic University of Leuven have now developed ENDEAVOUR: a computer program that compiles and processes data from a variety of databases and identifies the genes that play a key role in the origin of a disorder. ENDEAVOUR will undoubtedly become an indispensable tool for identifying disease genes. In testing their program, the researchers have succeeded in identifying a gene that plays a major role in the development of ‘DiGeorge syndrome’.



Seeing the forest for the trees...

Genes play an important role in a large number of disorders - prime examples are Alzheimer’s disease and cancer. A good understanding of these genes is essential in the quest for diagnoses and treatments. But identifying these ‘key genes’ among thousands of genes is an enormous challenge. Years of effort by scientists all over the world have led to a vast amount of data, but analyzing it is complex. These days, scientists are not only concerned with generating new data but also with deciphering the existing data, and thus being able to see the forest for the trees.


ENDEAVOUR

To decipher these genetic data, scientists have developed the computer program ENDEAVOUR. Drawing on various databases, ENDEAVOUR gathers all the data about genes that are known to be connected with a disease or a biological process and integrates these data into a mathematical model. With the aid of this model, scientists study the similarities between the ‘known genes’ and genes whose biological function is not yet known. ENDEAVOUR then indicates whether these genes might possibly underlie a certain disorder.

Testing the method

ENDEAVOUR has been fine-tuned and tested in the laboratory. The researchers took the data for a number of known genes from the mathematical model and then entered the genes as ‘unknown’ into ENDEAVOUR. For the majority of the syndromes tested (such as Alzheimer’s disease, leukemia, colon cancer, and Parkinson’s disease), ENDEAVOUR found the underlying genes and thus proved its validity.

Zebra fish enter the fray

As an extra validation of the program, the researchers used ENDEAVOUR to look for new disease genes that underlie hereditary disorders. Among other things, they wanted to identify a new gene that can be correlated with DiGeorge syndrome - a genetic disorder that affects more than 1 in 4000 newborn children. The infants have deformed features and blood vessel abnormalities in the heart. ENDEAVOUR identified one gene as a possible disease gene: YPEL1.

To confirm this mathematical prediction biologically, the researchers used the zebra fish as model system to replicate the disease. They studied zebra fish that could not produce the zebra fish YPEL1 gene. The embryos of these fish showed several abnormalities that are comparable to the symptoms of DiGeorge syndrome. This study provided the ultimate proof that ENDEAVOUR is a very useful tool for identifying new disease genes.

Identifying genes quickly

ENDEAVOUR can accelerate research into a number of disorders by providing the tools for rapidly identifying genes that play a role in the disorders.

Combining forces

Collaboration among several different research groups is not always easy to achieve, but it does usually lead to significant added value. The publication resulting from this research clearly demonstrates the importance of constructive collaboration in arriving at innovative results. Indeed, this is not the result of a single group’s research, but of the collaboration of four different research groups. The development and validation of a program such as ENDEAVOUR is possible only through the combination of a variety of skills and expertise.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>