Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little logic goes a long way

09.11.2001


Nano-circuits promise powerful palmtops.
© Y. Huang, X. Duan and C.M. Lieber, Harvard University


Ultra-minaturized electrical components could shrink supercomputers.

Researchers in the Netherlands and the United States have constructed simple computer circuits with electrical components many times smaller than those on commercial silicon chips1,2. These ultra-minaturized logic circuits hold out the prospect of hand-held computers as powerful as today’s state-of-the-art supercomputers.

Cees Dekker and co-workers at the Delft University of Technology in the Netherlands have used single molecules to produce logic circuits capable of basic arithmetical calculations1. The molecules are carbon nanotubes, tiny tubes of pure carbon just a few millionths of a millimetre (nanometres) wide.



A second team at Harvard University in Cambridge, Massachusetts, led by Charles Lieber, have produced similar circuits from wires of similar size to carbon nanotubes, but made from the semiconducting materials silicon and gallium nitride2. Lieber’s group previously perfected methods for growing these ’nanowires’ to specified dimensions and chemical composition.

Conventional diodes and transistors are etched out of flat sandwiches of silicon and other materials using acids. This approach struggles to make components smaller than about 200 nanometres across. Dekker and Lieber assemble their devices atom by atom. It is the difference between an artist chiselling away at a block of wood or gluing together matchsticks.

Carbon-nanotube transistors and even logic circuits have been made before. In 1998, Dekker’s group was the first to build a nanotube transistor; and last June, a team from IBM’s research laboratories in Yorktown Heights, New York, created logic circuits, called NOT gates, from nanotube transistors3. Dekker and colleagues have now wired up groups of nanotubes to make a variety of logic circuits, including a memory cell that could form part of a random-access memory.

One of the difficulties in making nanotube circuits on a large scale, Lieber points out, is that it is very hard to control the way the tubes conduct electricity. Some nanotubes are like metal wires, others act like semiconductors such as silicon. To make a nanotube transistor requires semiconducting rather than metallic conduction. But which kind of tube you get using existing synthesis methods is largely a matter of chance.

Lieber has much more control over the electrical properties of his nanowires. Transistors and other elements of logic circuits typically require two kinds of semiconductor, called p-type and n-type. The electrical currents are carried in these by positively and negatively charged particles, respectively. Lieber can grow both p- and n-type semiconducting nanowires.

Lieber crosses p-type silicon nanowires at right angles to n-type gallium-nitride nanowires. Devices form at the crossing points. By wiring several different devices together, the researchers produce all the major logic gates of computer circuitry.

References

  1. Bachtold, A. Hadley, P. Nakanishi, T. Dekker, C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 , (2001).

  2. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science, 294, 1313 - 1317, (2001).

  3. Derycke, V. Martel, R. Appenzeller, J. & Avouris, Ph.Carbon nanotube inter- and intramolecular logic gates. Nano Letters, 9, 453 - 456 , (2001).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011115/011115-1.html

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>