Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little logic goes a long way

09.11.2001


Nano-circuits promise powerful palmtops.
© Y. Huang, X. Duan and C.M. Lieber, Harvard University


Ultra-minaturized electrical components could shrink supercomputers.

Researchers in the Netherlands and the United States have constructed simple computer circuits with electrical components many times smaller than those on commercial silicon chips1,2. These ultra-minaturized logic circuits hold out the prospect of hand-held computers as powerful as today’s state-of-the-art supercomputers.

Cees Dekker and co-workers at the Delft University of Technology in the Netherlands have used single molecules to produce logic circuits capable of basic arithmetical calculations1. The molecules are carbon nanotubes, tiny tubes of pure carbon just a few millionths of a millimetre (nanometres) wide.



A second team at Harvard University in Cambridge, Massachusetts, led by Charles Lieber, have produced similar circuits from wires of similar size to carbon nanotubes, but made from the semiconducting materials silicon and gallium nitride2. Lieber’s group previously perfected methods for growing these ’nanowires’ to specified dimensions and chemical composition.

Conventional diodes and transistors are etched out of flat sandwiches of silicon and other materials using acids. This approach struggles to make components smaller than about 200 nanometres across. Dekker and Lieber assemble their devices atom by atom. It is the difference between an artist chiselling away at a block of wood or gluing together matchsticks.

Carbon-nanotube transistors and even logic circuits have been made before. In 1998, Dekker’s group was the first to build a nanotube transistor; and last June, a team from IBM’s research laboratories in Yorktown Heights, New York, created logic circuits, called NOT gates, from nanotube transistors3. Dekker and colleagues have now wired up groups of nanotubes to make a variety of logic circuits, including a memory cell that could form part of a random-access memory.

One of the difficulties in making nanotube circuits on a large scale, Lieber points out, is that it is very hard to control the way the tubes conduct electricity. Some nanotubes are like metal wires, others act like semiconductors such as silicon. To make a nanotube transistor requires semiconducting rather than metallic conduction. But which kind of tube you get using existing synthesis methods is largely a matter of chance.

Lieber has much more control over the electrical properties of his nanowires. Transistors and other elements of logic circuits typically require two kinds of semiconductor, called p-type and n-type. The electrical currents are carried in these by positively and negatively charged particles, respectively. Lieber can grow both p- and n-type semiconducting nanowires.

Lieber crosses p-type silicon nanowires at right angles to n-type gallium-nitride nanowires. Devices form at the crossing points. By wiring several different devices together, the researchers produce all the major logic gates of computer circuitry.

References

  1. Bachtold, A. Hadley, P. Nakanishi, T. Dekker, C. Logic circuits with carbon nanotube transistors. Science, 294, 1317 , (2001).

  2. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science, 294, 1313 - 1317, (2001).

  3. Derycke, V. Martel, R. Appenzeller, J. & Avouris, Ph.Carbon nanotube inter- and intramolecular logic gates. Nano Letters, 9, 453 - 456 , (2001).

PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011115/011115-1.html

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>