Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryos exposed in 3-D

08.05.2006


New method can identify what genes do, test drugs’ safety



Utah and Texas researchers combined miniature medical CT scans with high-tech computer methods to produce detailed three-dimensional images of mouse embryos – an efficient new method to test the safety of medicines and learn how mutant genes cause birth defects or cancer.

"Our method provides a fast, high-quality and inexpensive way to visually explore the 3-D internal structure of mouse embryos so scientists can more easily and quickly see the effects of a genetic defect or chemical damage," says Chris Johnson, a distinguished professor of computer science at the University of Utah.


A study reporting development of the new method – known as "microCT-based virtual histology" – was published recently in PLoS Genetics, an online journal of the Public Library of Science.

The study was led by Charles Keller, a pediatric cancer specialist who formerly worked as a postdoctoral fellow in the laboratory of University of Utah geneticist Mario Capecchi. Keller now is an assistant professor at the Children’s Cancer Research Institute at the University of Texas Health Science Center in San Antonio.

University of Utah co-authors of the study are Johnson – who directs the university’s Scientific Computing and Imaging Institute – Capecchi, medical student Mark S. Hansen and several members of Johnson’s institute: computer science undergraduate Thomas Johnson III, research assistant Lindsey Healey and former associate director Greg M. Jones, who now is state science advisor to Utah Gov. Jon Huntsman Jr.

Scientists often use mouse embryos both to learn what genes do and to test the safety of new drugs and household chemicals. By disabling or "knocking out" a gene, researchers can see what goes wrong in the mouse embryo and thus learn the gene’s normal function, or learn how a mutant gene can cause cancer. Mouse embryos also are sensitive to toxicity from chemicals, so new medicines and chemicals are tested on them to see if any defects develop, indicating the safety for humans and their unborn embryos.

But the traditional method of histology – the anatomical study of the microscopic structure of living tissues – has been difficult and time-consuming. Mouse embryos with genetic mutations or damage from toxic chemicals are killed, embedded in wax, sliced into thin sections, then stained and placed on slides for examination under a microscope.

The new, faster and inexpensive method is called "virtual histology" because it uses computer visualization techniques to convert X-ray CT scans of mouse embryos into detailed 3-D images showing both the mouse’s exterior and interior.

Instead of being sliced up physically, mouse embryos are stained with special dyes. Traditional CT scans take a series of X-ray images representing "slices" through the body, and they primarily "see" bone and other hard tissues such as cartilage. In the new microCT virtual histology, the special dyes permeate the skin and other membranes, which are still permeable in an embryo.

"This technique allows us to get at a lot more tissues other than bone, such as internal organs, which [conventional] CT scans can’t pick up," Johnson says.

Johnson and his team wrote a computer algorithm – a problem-solving formula in computer software – to take the CT scan data and automatically distinguish various organs and structures in the mouse embryo. The "virtual rendering" of the CT scan data also includes a virtual light source so the 3-D embryo image includes shadows that make it easier for the human eye to understand and interpret the image.

The embryo images can be made transparent or have cutaways so that internal organs and body parts are visible. And the detail they show is exquisite – revealing features as small as one-tenth the thickness of a human hair.

The idea is to allow geneticists to quickly examine large numbers of embryos, each with a different gene disabled, so that the normal function of many genes can be determined faster than with existing methods.

Keller says the U.S. Food and Drug Administration and Environmental Protection Agency require drug and chemical manufacturers, respectively, to test their new products, but that such tests often are subjective. The new method "allows chemical and drug companies to conduct these studies in a much more quantitative way, improving upon the safety of the products we find in our homes," he adds.

Keller and a colleague have founded a company named Numira Biosciences, which plans to make the virtual histology method available through the sale of kits and imaging services.

The study was published online in the April 28 issue of PLoS Genetics.

Chris Johnson | EurekAlert!
Further information:
http://www.utah.edu

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>