Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryos exposed in 3-D

08.05.2006


New method can identify what genes do, test drugs’ safety



Utah and Texas researchers combined miniature medical CT scans with high-tech computer methods to produce detailed three-dimensional images of mouse embryos – an efficient new method to test the safety of medicines and learn how mutant genes cause birth defects or cancer.

"Our method provides a fast, high-quality and inexpensive way to visually explore the 3-D internal structure of mouse embryos so scientists can more easily and quickly see the effects of a genetic defect or chemical damage," says Chris Johnson, a distinguished professor of computer science at the University of Utah.


A study reporting development of the new method – known as "microCT-based virtual histology" – was published recently in PLoS Genetics, an online journal of the Public Library of Science.

The study was led by Charles Keller, a pediatric cancer specialist who formerly worked as a postdoctoral fellow in the laboratory of University of Utah geneticist Mario Capecchi. Keller now is an assistant professor at the Children’s Cancer Research Institute at the University of Texas Health Science Center in San Antonio.

University of Utah co-authors of the study are Johnson – who directs the university’s Scientific Computing and Imaging Institute – Capecchi, medical student Mark S. Hansen and several members of Johnson’s institute: computer science undergraduate Thomas Johnson III, research assistant Lindsey Healey and former associate director Greg M. Jones, who now is state science advisor to Utah Gov. Jon Huntsman Jr.

Scientists often use mouse embryos both to learn what genes do and to test the safety of new drugs and household chemicals. By disabling or "knocking out" a gene, researchers can see what goes wrong in the mouse embryo and thus learn the gene’s normal function, or learn how a mutant gene can cause cancer. Mouse embryos also are sensitive to toxicity from chemicals, so new medicines and chemicals are tested on them to see if any defects develop, indicating the safety for humans and their unborn embryos.

But the traditional method of histology – the anatomical study of the microscopic structure of living tissues – has been difficult and time-consuming. Mouse embryos with genetic mutations or damage from toxic chemicals are killed, embedded in wax, sliced into thin sections, then stained and placed on slides for examination under a microscope.

The new, faster and inexpensive method is called "virtual histology" because it uses computer visualization techniques to convert X-ray CT scans of mouse embryos into detailed 3-D images showing both the mouse’s exterior and interior.

Instead of being sliced up physically, mouse embryos are stained with special dyes. Traditional CT scans take a series of X-ray images representing "slices" through the body, and they primarily "see" bone and other hard tissues such as cartilage. In the new microCT virtual histology, the special dyes permeate the skin and other membranes, which are still permeable in an embryo.

"This technique allows us to get at a lot more tissues other than bone, such as internal organs, which [conventional] CT scans can’t pick up," Johnson says.

Johnson and his team wrote a computer algorithm – a problem-solving formula in computer software – to take the CT scan data and automatically distinguish various organs and structures in the mouse embryo. The "virtual rendering" of the CT scan data also includes a virtual light source so the 3-D embryo image includes shadows that make it easier for the human eye to understand and interpret the image.

The embryo images can be made transparent or have cutaways so that internal organs and body parts are visible. And the detail they show is exquisite – revealing features as small as one-tenth the thickness of a human hair.

The idea is to allow geneticists to quickly examine large numbers of embryos, each with a different gene disabled, so that the normal function of many genes can be determined faster than with existing methods.

Keller says the U.S. Food and Drug Administration and Environmental Protection Agency require drug and chemical manufacturers, respectively, to test their new products, but that such tests often are subjective. The new method "allows chemical and drug companies to conduct these studies in a much more quantitative way, improving upon the safety of the products we find in our homes," he adds.

Keller and a colleague have founded a company named Numira Biosciences, which plans to make the virtual histology method available through the sale of kits and imaging services.

The study was published online in the April 28 issue of PLoS Genetics.

Chris Johnson | EurekAlert!
Further information:
http://www.utah.edu

More articles from Information Technology:

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

nachricht Holograms taken to new dimension
19.07.2017 | University of Utah

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>