Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared system helps pilots and drivers see in fog and at night

03.05.2006


A European research project has developed a prototype infrared-camera system that substantially enhances human visual perception in poor visibility conditions such as fog, heavy rain and at night.



The system doubled airline pilots’ ability to detect obstacles in tests simulating poor visibility, and in road tests it boosted automobile drivers’ vision up to 400 per cent. It could eventually be used aboard commercial airliners and in cars to improve safety.

As Pierre-Albert Breton of Thales Avionics, a partner in the SEE project explains, poor visibility causes flight delays, diversions and cancellations, as well as accidents. Studies also show that far more automobile accidents occur at night than during the day.


In the IST-funded SEE project, which ended in December, researchers developed two types of sensors, one detecting the short wave infrared band and another the long wave. Combining complementary data from the two cameras, the system produces a more complete image than either sensor could produce on its own.

"The challenge was to develop a low-cost technology to detect all the elements that would be visible to the naked eye in good conditions and display them to the driver or pilot on a screen," says Breton.

Since foggy weather is difficult to predict, "An important step was to develop a simulator to validate the system’s feasibility in a broad range of visibility conditions, with airline pilots using the simulator," says Breton. "We wanted to determine if pilots would accept the system."

"Feedback from pilots was very useful," says Breton. "They told us the system was very effective for detecting other aircraft on the runway. The planes are very hot, so the infrared systems pick that up very well." The system improved pilot visibility of obstacles by about 100 per cent, says Breton. "So, if a pilot could see an obstacle at 300 metres with the naked eye, the system would allow seeing it at 600 metres, giving more time to react."

In November 2001, a passenger flight crashed into a forest on a night landing approach into Zurich, killing 24. Could the SEE system have prevented it? Maybe, says Breton. "It allows the pilot to see the landscape and detect obstacles earlier, but the system is not magic. Simulation showed it to be less effective in landings. Due to the speed of an approach, a visibility gain of 50 per cent or even 100 per cent is not as significant as it is in runway taxiing," he says.

SEE researchers also conducted tests on cars driven in real, foggy conditions, says Breton. The dual cameras, weighing 15 kilos, were mounted on the car roof, with an electronic system for piloting and recording in the trunk. The system improved human visual perception by at least fourfold, says Breton. "It was really effective at detecting a person or an animal on the side of the road." This could help drivers see pedestrians or cyclists in poor visibility conditions, a major source of accidents, he says.

BMW, one of the project’s eight partners, is exploring low-cost applications of the system to improve automotive safety. "This would certainly be a marketable feature," says Breton. However, he says, the current system’s cost of 5,000 euros – a cockpit system would cost far more – makes it impractical. Work is planned to bring down the cost.

For aviation, the next step is to use pilot feedback in developing a complete cockpit simulator, for more extensive tests with pilots, says Breton. He estimates it will be at least another ten years before the system could be installed on commercial airliners. "There is still a lot of testing and refinement to be done."

Jernett Karensen | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/ID/81685/BrowsingType/Features

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>