Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Delft enhances military uniform protectiveness

25.04.2006


Until now, little was known about the physiochemical processes that determine the protective qualities of military uniforms (for example, for protection against poisonous gases). TU Delft researcher Michal Sobera has changed all this however through the use of computer modeling. He believes that within a few years it will be possible to calculate this by means of a realistic model of the human body with protective clothing. On April 25, Sobera will receive his PhD based on this research subject.



During his PhD research, Michal Sobera studied clothing that protects people against so-called NBC-weapons (Nuclear, Biological and Chemical). This clothing is for example worn by soldiers and fire department personnel, protecting them (as far as possible) against for instance poisonous gases. Sobera conducted his research for, and in close cooperation with, TNO Defense & Safety, and he also worked together with the United States military – to be precise, the US Army Soldier Systems Center, a US Department of Defense research institute that specialises in researching issues that are directly related to military personnel.

Until now, there was relatively little fundamental knowledge available about how the functioning of this type of clothing is effected by currents and transfers of heat and mass. Sobera’s research findings have now contributed toward taking this knowledge to a higher level.


Sobera’s research was entirely conducted using a computer. No test subjects were used. Sobera arrived at his conclusions via computer modeling of the relevant body parts, the protective clothing and the physical laws that dangerous gasses (and the like) must adhere to.

A key focal point of the research is determining at which point in time the clothing loses its effectiveness. At a certain point, the absorbent carbon layers in the clothing become saturated, whereby the protective function of the clothing rapidly diminishes. Sobera used his computer models to calculate this moment in time for various situations. This was done by using relatively simple models, but Sobera believes that calculations for a completely realistic model for the human body, including protective clothing, will be possible in a few years.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>