Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster, more efficient searching of medical images

21.04.2006


A Danish-led research project has made encouraging progress toward using advanced mathematics as the basis of an improved method for indexing and searching medical images in the huge digital databases of clinics and hospitals.



Completed in November 2005, the DSSCV consortium’s long-term goal was to contribute to software tools allowing doctors and hospital technicians to quickly search and match X-rays, magnetic resonance images and computed 3D tomography scans, particularly of the craniofacial region.

"Let’s say a doctor has a new patient with a broken bone," says coordinator, Mads Nielsen, a professor of computer science at the IT University of Copenhagen. "He remembers seeing a similar fracture and wants to recall how he treated that patient, but doesn’t remember the case number. By inputting the X-ray of the new patient, this computer system would allow finding the relevant, digitally stored image of that kind of fracture."


"Anybody that needs to compare or search images for specific features could use the technology," says Nielsen. However, he estimates that practical use will require five to 10 more years of development.

Funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, the DSSCV project gathered mathematicians and computer scientists from four European universities with the objective of developing more efficient algorithms for comparing shapes, in this case images. "A shape is a very complicated thing to describe mathematically," explains Nielsen. "To efficiently compare shapes, you need something that doesn’t compare every feature."

The researchers refined the practical application of singularity and scale-space theories to develop algorithms that describe the deep structure of a shape, which Nielsen explains as a collection of details, called singularities. Such an algorithm makes it possible to disregard singularities that do not match the particular shape sought.

"An analogy would be a stadium full of 20,000 spectators, and you want to find your brother”, he says. "You are not going to look at every wrinkle, eyebrow and strand of hair. You eliminate the details that are irrelevant in order to zoom in on your brother."

The team worked with theories of how singularities emerge and disappear in an image. For example, catastrophe theory can explain how one slight change to part of an image can drastically change the overall picture. Says Nielsen, "Zoom in on a tree, and branches and leaves appear. The algorithm we’ve developed allows such a coarse-to-fine way to break shapes into parts, compare them and determine how they relate to each other."

DSSCV partners have been awarded five grants, for the projects ‘Natural shape’, from the Danish Research Agency; ‘Quantitative shape modelling in biomedical imaging’, from the Danish Technical Research Council; ‘The problem of scale in biomedical image analysis’ and ‘Robust multi-scale methods for optic flow’, from the Dutch Science Foundation; and a grant from the British Research Council for Science and Engineering.

Nielsen says computer vision is still an exploratory field, moving in many different directions. Still, due to pressure from major medical equipment manufacturers, some areas are beginning to standardise—especially in the medical area.

Scientific communication is key to progress, says Nielsen. DSSCV has presented results in several scientific journals and conferences and held an open workshop with participants from the US and Japan. "We gained and provided valuable insights. The feedback has been good."

Looking ahead, Nielsen says, "We’ve done the deep mathematics. Now we’d like to do another project with other partners more involved in the practical issues, such as doctors and hospitals."

Source: Based on information from DSSCV

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81471

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>