Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster, more efficient searching of medical images

21.04.2006


A Danish-led research project has made encouraging progress toward using advanced mathematics as the basis of an improved method for indexing and searching medical images in the huge digital databases of clinics and hospitals.



Completed in November 2005, the DSSCV consortium’s long-term goal was to contribute to software tools allowing doctors and hospital technicians to quickly search and match X-rays, magnetic resonance images and computed 3D tomography scans, particularly of the craniofacial region.

"Let’s say a doctor has a new patient with a broken bone," says coordinator, Mads Nielsen, a professor of computer science at the IT University of Copenhagen. "He remembers seeing a similar fracture and wants to recall how he treated that patient, but doesn’t remember the case number. By inputting the X-ray of the new patient, this computer system would allow finding the relevant, digitally stored image of that kind of fracture."


"Anybody that needs to compare or search images for specific features could use the technology," says Nielsen. However, he estimates that practical use will require five to 10 more years of development.

Funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, the DSSCV project gathered mathematicians and computer scientists from four European universities with the objective of developing more efficient algorithms for comparing shapes, in this case images. "A shape is a very complicated thing to describe mathematically," explains Nielsen. "To efficiently compare shapes, you need something that doesn’t compare every feature."

The researchers refined the practical application of singularity and scale-space theories to develop algorithms that describe the deep structure of a shape, which Nielsen explains as a collection of details, called singularities. Such an algorithm makes it possible to disregard singularities that do not match the particular shape sought.

"An analogy would be a stadium full of 20,000 spectators, and you want to find your brother”, he says. "You are not going to look at every wrinkle, eyebrow and strand of hair. You eliminate the details that are irrelevant in order to zoom in on your brother."

The team worked with theories of how singularities emerge and disappear in an image. For example, catastrophe theory can explain how one slight change to part of an image can drastically change the overall picture. Says Nielsen, "Zoom in on a tree, and branches and leaves appear. The algorithm we’ve developed allows such a coarse-to-fine way to break shapes into parts, compare them and determine how they relate to each other."

DSSCV partners have been awarded five grants, for the projects ‘Natural shape’, from the Danish Research Agency; ‘Quantitative shape modelling in biomedical imaging’, from the Danish Technical Research Council; ‘The problem of scale in biomedical image analysis’ and ‘Robust multi-scale methods for optic flow’, from the Dutch Science Foundation; and a grant from the British Research Council for Science and Engineering.

Nielsen says computer vision is still an exploratory field, moving in many different directions. Still, due to pressure from major medical equipment manufacturers, some areas are beginning to standardise—especially in the medical area.

Scientific communication is key to progress, says Nielsen. DSSCV has presented results in several scientific journals and conferences and held an open workshop with participants from the US and Japan. "We gained and provided valuable insights. The feedback has been good."

Looking ahead, Nielsen says, "We’ve done the deep mathematics. Now we’d like to do another project with other partners more involved in the practical issues, such as doctors and hospitals."

Source: Based on information from DSSCV

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81471

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>