Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the underworld – don’t dig there!

22.03.2006


The first 3D maps of the UK underworld are to be created in a new £2.2m project which will save the UK millions of pounds by reducing the amount we dig up our roads.



There are enough pipes and cables buried under our streets to stretch to the moon and back ten times, but we don’t know where many of them are. Researchers from the Universities of Leeds and Nottingham will help to locate them, by finding a way to integrate existing digital and paper-based records and link these with data from satellite and ground-based positioning systems.

They aim to bring all this information together in a format that’s easy to understand for contractors, utility companies and planners – so it can be displayed visually on a PC in the office or handheld unit in the street.


Four million holes are dug each year in the nation’s road – one every seven seconds – to repair pipes and cables or install new ones, at an estimated cost of £1bn per annum. With indirect costs, such as congestion, this rises to an estimated £5bn p.a. – over £80 for every inhabitant of the UK.

By creating more accurate information, the project will help reduce the numbers of holes dug, ensure they are dug in the right place and that unexpected pipes and cables aren’t damaged in the process. Reducing roadworks by just 0.1% would save the UK economy millions of pounds a year.

Announcing £900,000 funding for the research from the DTI’s Technology Programme, Minister for Science and Innovation, Lord Sainsbury, heralded the project as ‘world beating’ and said it would help ‘develop a competitive advantage for British business’.

Leading the research at Leeds is Professor of Automated Reasoning, Tony Cohn. He said: “We’ll always need to dig holes in the street, but reducing the amount of roadworks would bring enormous economic and environmental benefits, with fewer traffic jams and exhaust emissions. From a human point of view, we also hope to reduce the number of fatalities and injuries every year from accidental hits on gas pipes and electrical cables.

“Many of the country’s underground pipes were laid in the 19th and early 20th century, when it wasn’t seen as important to keep accurate records of location and depth. Even where we have records, many are now very inaccurate, as reference points such as kerbs or buildings have moved or been demolished. And because each company has their own records there’s no easy way of providing an integrated view. Our aim is to create the technology to enable the construction of a dynamic map of all the UK’s underground assets.”

One of the challenges facing the researchers is to create a centimetre-accurate satellite-based location technology which can work even in ‘urban canyons’ to record in-street observations. Another challenge is linking these recordings to existing information held by each utility, to create a complete picture of what lies underground. The final step will be ensuring this information is provided to those who need it in a form that is accessible and comprehensible.

The research is being led by the University of Leeds, in collaboration with the University of Nottingham and 19 companies and organisations from the utilities, transport and engineering sectors and managed by UKWIR (UK Water Industry Research Ltd).

Vanessa Bridge | alfa
Further information:
http://www.comp.leeds.ac.uk/mtu
http://www.leeds.ac.uk

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>