Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the underworld – don’t dig there!

22.03.2006


The first 3D maps of the UK underworld are to be created in a new £2.2m project which will save the UK millions of pounds by reducing the amount we dig up our roads.



There are enough pipes and cables buried under our streets to stretch to the moon and back ten times, but we don’t know where many of them are. Researchers from the Universities of Leeds and Nottingham will help to locate them, by finding a way to integrate existing digital and paper-based records and link these with data from satellite and ground-based positioning systems.

They aim to bring all this information together in a format that’s easy to understand for contractors, utility companies and planners – so it can be displayed visually on a PC in the office or handheld unit in the street.


Four million holes are dug each year in the nation’s road – one every seven seconds – to repair pipes and cables or install new ones, at an estimated cost of £1bn per annum. With indirect costs, such as congestion, this rises to an estimated £5bn p.a. – over £80 for every inhabitant of the UK.

By creating more accurate information, the project will help reduce the numbers of holes dug, ensure they are dug in the right place and that unexpected pipes and cables aren’t damaged in the process. Reducing roadworks by just 0.1% would save the UK economy millions of pounds a year.

Announcing £900,000 funding for the research from the DTI’s Technology Programme, Minister for Science and Innovation, Lord Sainsbury, heralded the project as ‘world beating’ and said it would help ‘develop a competitive advantage for British business’.

Leading the research at Leeds is Professor of Automated Reasoning, Tony Cohn. He said: “We’ll always need to dig holes in the street, but reducing the amount of roadworks would bring enormous economic and environmental benefits, with fewer traffic jams and exhaust emissions. From a human point of view, we also hope to reduce the number of fatalities and injuries every year from accidental hits on gas pipes and electrical cables.

“Many of the country’s underground pipes were laid in the 19th and early 20th century, when it wasn’t seen as important to keep accurate records of location and depth. Even where we have records, many are now very inaccurate, as reference points such as kerbs or buildings have moved or been demolished. And because each company has their own records there’s no easy way of providing an integrated view. Our aim is to create the technology to enable the construction of a dynamic map of all the UK’s underground assets.”

One of the challenges facing the researchers is to create a centimetre-accurate satellite-based location technology which can work even in ‘urban canyons’ to record in-street observations. Another challenge is linking these recordings to existing information held by each utility, to create a complete picture of what lies underground. The final step will be ensuring this information is provided to those who need it in a form that is accessible and comprehensible.

The research is being led by the University of Leeds, in collaboration with the University of Nottingham and 19 companies and organisations from the utilities, transport and engineering sectors and managed by UKWIR (UK Water Industry Research Ltd).

Vanessa Bridge | alfa
Further information:
http://www.comp.leeds.ac.uk/mtu
http://www.leeds.ac.uk

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>