Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the underworld – don’t dig there!

22.03.2006


The first 3D maps of the UK underworld are to be created in a new £2.2m project which will save the UK millions of pounds by reducing the amount we dig up our roads.



There are enough pipes and cables buried under our streets to stretch to the moon and back ten times, but we don’t know where many of them are. Researchers from the Universities of Leeds and Nottingham will help to locate them, by finding a way to integrate existing digital and paper-based records and link these with data from satellite and ground-based positioning systems.

They aim to bring all this information together in a format that’s easy to understand for contractors, utility companies and planners – so it can be displayed visually on a PC in the office or handheld unit in the street.


Four million holes are dug each year in the nation’s road – one every seven seconds – to repair pipes and cables or install new ones, at an estimated cost of £1bn per annum. With indirect costs, such as congestion, this rises to an estimated £5bn p.a. – over £80 for every inhabitant of the UK.

By creating more accurate information, the project will help reduce the numbers of holes dug, ensure they are dug in the right place and that unexpected pipes and cables aren’t damaged in the process. Reducing roadworks by just 0.1% would save the UK economy millions of pounds a year.

Announcing £900,000 funding for the research from the DTI’s Technology Programme, Minister for Science and Innovation, Lord Sainsbury, heralded the project as ‘world beating’ and said it would help ‘develop a competitive advantage for British business’.

Leading the research at Leeds is Professor of Automated Reasoning, Tony Cohn. He said: “We’ll always need to dig holes in the street, but reducing the amount of roadworks would bring enormous economic and environmental benefits, with fewer traffic jams and exhaust emissions. From a human point of view, we also hope to reduce the number of fatalities and injuries every year from accidental hits on gas pipes and electrical cables.

“Many of the country’s underground pipes were laid in the 19th and early 20th century, when it wasn’t seen as important to keep accurate records of location and depth. Even where we have records, many are now very inaccurate, as reference points such as kerbs or buildings have moved or been demolished. And because each company has their own records there’s no easy way of providing an integrated view. Our aim is to create the technology to enable the construction of a dynamic map of all the UK’s underground assets.”

One of the challenges facing the researchers is to create a centimetre-accurate satellite-based location technology which can work even in ‘urban canyons’ to record in-street observations. Another challenge is linking these recordings to existing information held by each utility, to create a complete picture of what lies underground. The final step will be ensuring this information is provided to those who need it in a form that is accessible and comprehensible.

The research is being led by the University of Leeds, in collaboration with the University of Nottingham and 19 companies and organisations from the utilities, transport and engineering sectors and managed by UKWIR (UK Water Industry Research Ltd).

Vanessa Bridge | alfa
Further information:
http://www.comp.leeds.ac.uk/mtu
http://www.leeds.ac.uk

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>