Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We’re flying without wing flaps and without a pilot

22.03.2006


The revolutionary model plane has been developed as part of a £6.2m programme, involving engineers from the University of Leicester, funded jointly by the Engineering and Physical Sciences Research Council and BAE Systems.



The five-year programme is called FLAVIIR - flapless air vehicle integrated industrial research - and involves teams from Leicester, Liverpool, Nottingham, Southampton, Swansea, Warwick, York and London. Manchester University’s Goldstein Aeronautical Research Laboratory developed the model aircraft and the programme is managed by Cranfield University.

"The overall programme is aimed at developing new technologies for future generation uninhabited air vehicles, so called UAVs," said Professor Ian Postlethwaite, Pro-Vice-Chancellor and Professor of Engineering at Leicester.


"The team involves experts from around the UK in Aerodynamics, Control Systems, Electromagnetics, Manufacturing, Materials and Structures, and Numerical Simulation. The results from the different groups will be brought together in a single flying demonstrator in about 2009. The concept of a flapless vehicle, using fluidic thrust vectoring (where direction is changed with a secondary air flow) and air jets, is one important area of investigation. Another is the replacement of the pilot by sophisticated software that can autonomously fly the vehicle without collisions in what might be dangerous or remote environments." This is the contribution of the Leicester researchers.

Professor Postlethwaite and Dr Da-Wei Gu, working with Research Assistants Sarah Blaney, Kannan Natesan and Yoonsoo Kim and Research Students Ihab Abou Rayan, Jianchi Chen and Samir Hassoun from the Control group at Leicester, are involved in increasing the levels of autonomy and performance in UAVs through research on co-ordinated control, integrated control and condition monitoring.

Over the past year, the Leicester team has developed a software package for the flight path planning task. The package incorporates several planning methods and is able to run in real-time and deal with uncertain situations.

Algorithms for co-ordinated mission task planning involving several UAVs are currently under development. Some initial robust control systems have been designed for the demonstrator model and control schemes, which explore FTV (fluidic thrust vectoring) and CC (circulation control – which replaces conventional flaps by blowing air from the trailing edge of the wing) actuators will be a major development. A health management/condition monitoring system is also planned.

In addition, the Leicester team will explore the potential of multiple sensors (sensor arrays) distributed across an airframe to provide virtual air data for use in the health monitoring and improved control of future UAVs.

Another key project will be developing fault detection mechanisms for use in a fault tolerant flight control system, which can automatically adapt for failures sustained during a mission thereby maintaining adequate flight performance and stability.

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>