Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We’re flying without wing flaps and without a pilot

22.03.2006


The revolutionary model plane has been developed as part of a £6.2m programme, involving engineers from the University of Leicester, funded jointly by the Engineering and Physical Sciences Research Council and BAE Systems.



The five-year programme is called FLAVIIR - flapless air vehicle integrated industrial research - and involves teams from Leicester, Liverpool, Nottingham, Southampton, Swansea, Warwick, York and London. Manchester University’s Goldstein Aeronautical Research Laboratory developed the model aircraft and the programme is managed by Cranfield University.

"The overall programme is aimed at developing new technologies for future generation uninhabited air vehicles, so called UAVs," said Professor Ian Postlethwaite, Pro-Vice-Chancellor and Professor of Engineering at Leicester.


"The team involves experts from around the UK in Aerodynamics, Control Systems, Electromagnetics, Manufacturing, Materials and Structures, and Numerical Simulation. The results from the different groups will be brought together in a single flying demonstrator in about 2009. The concept of a flapless vehicle, using fluidic thrust vectoring (where direction is changed with a secondary air flow) and air jets, is one important area of investigation. Another is the replacement of the pilot by sophisticated software that can autonomously fly the vehicle without collisions in what might be dangerous or remote environments." This is the contribution of the Leicester researchers.

Professor Postlethwaite and Dr Da-Wei Gu, working with Research Assistants Sarah Blaney, Kannan Natesan and Yoonsoo Kim and Research Students Ihab Abou Rayan, Jianchi Chen and Samir Hassoun from the Control group at Leicester, are involved in increasing the levels of autonomy and performance in UAVs through research on co-ordinated control, integrated control and condition monitoring.

Over the past year, the Leicester team has developed a software package for the flight path planning task. The package incorporates several planning methods and is able to run in real-time and deal with uncertain situations.

Algorithms for co-ordinated mission task planning involving several UAVs are currently under development. Some initial robust control systems have been designed for the demonstrator model and control schemes, which explore FTV (fluidic thrust vectoring) and CC (circulation control – which replaces conventional flaps by blowing air from the trailing edge of the wing) actuators will be a major development. A health management/condition monitoring system is also planned.

In addition, the Leicester team will explore the potential of multiple sensors (sensor arrays) distributed across an airframe to provide virtual air data for use in the health monitoring and improved control of future UAVs.

Another key project will be developing fault detection mechanisms for use in a fault tolerant flight control system, which can automatically adapt for failures sustained during a mission thereby maintaining adequate flight performance and stability.

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>