Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We’re flying without wing flaps and without a pilot

22.03.2006


The revolutionary model plane has been developed as part of a £6.2m programme, involving engineers from the University of Leicester, funded jointly by the Engineering and Physical Sciences Research Council and BAE Systems.



The five-year programme is called FLAVIIR - flapless air vehicle integrated industrial research - and involves teams from Leicester, Liverpool, Nottingham, Southampton, Swansea, Warwick, York and London. Manchester University’s Goldstein Aeronautical Research Laboratory developed the model aircraft and the programme is managed by Cranfield University.

"The overall programme is aimed at developing new technologies for future generation uninhabited air vehicles, so called UAVs," said Professor Ian Postlethwaite, Pro-Vice-Chancellor and Professor of Engineering at Leicester.


"The team involves experts from around the UK in Aerodynamics, Control Systems, Electromagnetics, Manufacturing, Materials and Structures, and Numerical Simulation. The results from the different groups will be brought together in a single flying demonstrator in about 2009. The concept of a flapless vehicle, using fluidic thrust vectoring (where direction is changed with a secondary air flow) and air jets, is one important area of investigation. Another is the replacement of the pilot by sophisticated software that can autonomously fly the vehicle without collisions in what might be dangerous or remote environments." This is the contribution of the Leicester researchers.

Professor Postlethwaite and Dr Da-Wei Gu, working with Research Assistants Sarah Blaney, Kannan Natesan and Yoonsoo Kim and Research Students Ihab Abou Rayan, Jianchi Chen and Samir Hassoun from the Control group at Leicester, are involved in increasing the levels of autonomy and performance in UAVs through research on co-ordinated control, integrated control and condition monitoring.

Over the past year, the Leicester team has developed a software package for the flight path planning task. The package incorporates several planning methods and is able to run in real-time and deal with uncertain situations.

Algorithms for co-ordinated mission task planning involving several UAVs are currently under development. Some initial robust control systems have been designed for the demonstrator model and control schemes, which explore FTV (fluidic thrust vectoring) and CC (circulation control – which replaces conventional flaps by blowing air from the trailing edge of the wing) actuators will be a major development. A health management/condition monitoring system is also planned.

In addition, the Leicester team will explore the potential of multiple sensors (sensor arrays) distributed across an airframe to provide virtual air data for use in the health monitoring and improved control of future UAVs.

Another key project will be developing fault detection mechanisms for use in a fault tolerant flight control system, which can automatically adapt for failures sustained during a mission thereby maintaining adequate flight performance and stability.

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>