Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

We’re flying without wing flaps and without a pilot

22.03.2006


The revolutionary model plane has been developed as part of a £6.2m programme, involving engineers from the University of Leicester, funded jointly by the Engineering and Physical Sciences Research Council and BAE Systems.



The five-year programme is called FLAVIIR - flapless air vehicle integrated industrial research - and involves teams from Leicester, Liverpool, Nottingham, Southampton, Swansea, Warwick, York and London. Manchester University’s Goldstein Aeronautical Research Laboratory developed the model aircraft and the programme is managed by Cranfield University.

"The overall programme is aimed at developing new technologies for future generation uninhabited air vehicles, so called UAVs," said Professor Ian Postlethwaite, Pro-Vice-Chancellor and Professor of Engineering at Leicester.


"The team involves experts from around the UK in Aerodynamics, Control Systems, Electromagnetics, Manufacturing, Materials and Structures, and Numerical Simulation. The results from the different groups will be brought together in a single flying demonstrator in about 2009. The concept of a flapless vehicle, using fluidic thrust vectoring (where direction is changed with a secondary air flow) and air jets, is one important area of investigation. Another is the replacement of the pilot by sophisticated software that can autonomously fly the vehicle without collisions in what might be dangerous or remote environments." This is the contribution of the Leicester researchers.

Professor Postlethwaite and Dr Da-Wei Gu, working with Research Assistants Sarah Blaney, Kannan Natesan and Yoonsoo Kim and Research Students Ihab Abou Rayan, Jianchi Chen and Samir Hassoun from the Control group at Leicester, are involved in increasing the levels of autonomy and performance in UAVs through research on co-ordinated control, integrated control and condition monitoring.

Over the past year, the Leicester team has developed a software package for the flight path planning task. The package incorporates several planning methods and is able to run in real-time and deal with uncertain situations.

Algorithms for co-ordinated mission task planning involving several UAVs are currently under development. Some initial robust control systems have been designed for the demonstrator model and control schemes, which explore FTV (fluidic thrust vectoring) and CC (circulation control – which replaces conventional flaps by blowing air from the trailing edge of the wing) actuators will be a major development. A health management/condition monitoring system is also planned.

In addition, the Leicester team will explore the potential of multiple sensors (sensor arrays) distributed across an airframe to provide virtual air data for use in the health monitoring and improved control of future UAVs.

Another key project will be developing fault detection mechanisms for use in a fault tolerant flight control system, which can automatically adapt for failures sustained during a mission thereby maintaining adequate flight performance and stability.

Alex Jelley | alfa
Further information:
http://www.le.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>