Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New SECSE project seeks to manage spatial connections

10.03.2006


A new research project led by academics at the University of Southampton will look at how spatial connections can be managed and will use air traffic control as a model.



The ambitious £1.5m, three-year project is called ’Spatially Embedded Complex Systems Engineering’ (SECSE). It is funded by the Engineering and Physical Sciences Research Council (EPSRC) and has brought together experts in neuroscience, artificial intelligence, geography and complex systems, to understand the role of the spatial organisation and spatial processes in complex networks.

Dr Seth Bullock from the University’s School of Electronics & Computer Science (ECS), the principal investigator on the project, is working with academics at the Universities of Sussex and Leeds and University College London to look at the possibility of engineering large-scale IT networks based on natural systems.


The researchers will look, in particular, at applying their research to air traffic control systems to understand how to manage air-space so that efficiency, robustness and flexibility can be balanced.

They will also look at issues such as social and geographical networks to understand how academics work together, to identify academic hotspots around the country and to look at how the Internet has changed how individuals collaborate.

They will turn to the human brain and other natural systems for examples of how spatial connections are made. Dr Bullock commented: ’We are interested in the networks of connected neurons but also the space within which those networks are embedded: a chemical soup. The human brain can guide us as to how space and spatial processes can be exploited by a complex network.’

For today’s engineers, a key challenge is to manage the network transition from systems comprising many relatively isolated computational elements to large-scale, massively interconnected systems that are physically distributed and affected by local conditions, yet must remain robust and efficient.

Dr Bullock added: ’We are already surrounded by systems that are attempting to achieve this transition: from e-government, the digital NHS and virtual universities, to peer-to-peer communities, grid computing and e-science. Traditional, centralised approaches do not scale to cope with these systems, and as yet we have no established design methodology capable of guiding this type of transition. We believe that our research will change this state of affairs.’

Joyce Lewis | alfa
Further information:
http://www.ecs.soton.ac.uk/people/sgb

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>