Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer interface design starts with respecting the real world

20.02.2006


Protoypes can help designers meet user needs



Before Jeff Hawkins ever started making the original Palm Pilot digital organizer he prototyped it as a block of wood with fake buttons and a paper screen. To this day the Palm Pilot is a successful design of human and computer interaction that remains all too rare, says Stanford computer science Assistant Professor Scott Klemmer. Every time a person uses a computer--a desktop, a cell phone or even a chip-enabled coffee maker--the interaction is specified by an interface designer. These interfaces often fall short or even fail, Klemmer says, because designers overlook the physical nature of human beings and the real world. As computers become ubiquitous, designers must take everyday users into account from the beginning, prototyping extensively to stay attuned human needs and capabilities.

"In naïve techno-utopianism, we just put everything into the land of bits without really thinking about it," says Klemmer, who will speak Feb. 18 at the American Association for the Advancement of Science annual meeting in St. Louis. "We’ve lost a lot of the things that we had in the physical world--a lot of the intuitions, a lot of the fidelity of control that our bodies offer."


Traditional computer interfaces often hinder the way people work, learn, play and interact, Klemmer says. Virtual interactions should supplement--but not supplant--physical ones. At the conference, Klemmer will offer designers guidance including a set of principles to keep computer interfaces in physical perspective. He hopes the principles and closer attention to prototyping as a design methodology will help future computer interface designs deliver the benefits of information technology without sacrificing the inherent advantages of the physical world.

Design principles

Klemmer’s design principles address the shortcomings of traditional digital design approaches in accounting for the physical and social nature of human beings.

One key principle, for example, is that there is a limit to how much one should make product design virtual rather than physical. Simulations can speed the process, but designers like Hawkins gain invaluable feedback from building and critiquing physical prototypes. Seeking the happiest medium between physical and virtual design methods, Klemmer and doctoral candidate Bjoern Hartmann have developed a consumer electronics rapid prototyping system called d.Tools that allows users to design a gadget’s hardware and software in concert. To build an MP3 player, for example, a designer would assemble d.Tools hardware components such as "play" and "pause" buttons, a volume control, speakers and an LCD screen into a physical device. The d.Tools software, which automatically recognizes the hardware components, would bring the physical device "to life" by letting designers assign capabilities to the controls. The designers would also use d.Tools to create the interface between the user and the device.

Another principle is recognizing that the human body is a well-engineered machine fully capable of managing rich and intricate interactions with the world. Keyboards, mice or buttons might not provide the best interactions to meet a user’s needs. All the word processors in the world haven’t, for example, made the myth of the "paperless office" come true because for tasks like taking notes or writing down ideas, people often prefer working with pliable, reliable paper, Klemmer says. Meanwhile the popular video game Dance Dance Revolution, which players control by dancing on an electronic platform, is a huge success because it preserves the physical joy of dancing.

Designers should also keep in mind that in physical environments, people can quickly observe useful information about each other, a principle Klemmer calls "visibility." Walk around an auto body shop or an art studio, for example, and it is easy to see what everyone is working on and how that work is progressing. So far computer interfaces have, if anything, reduced visibility. Prototypes for feedback

The design principles will have the greatest impact if they are paired with the practice of prototyping, Klemmer says. Rather than trying to devise an entire digital product or experience in the lab before testing it with users, designers should frequently test mockups, dummies, and other limited versions of the project to gather specific feedback for continuous improvement.

The response of users to different kinds of prototypes can answer crucial questions early in development such as does the product look like users want it to? Does it work like users want it to? And, does it fit in well with the experience they want to have when they use it?

The need to design interfaces that can respect but augment the physical nature of humanity is becoming more acute as computers begin to greatly outnumber people. "Having thousands of keyboards per person is not a realistic solution," Klemmer says. "The successful interfaces will weave themselves into the fabric of everyday life." That is, computing will only seem natural when it is designed to be part of the natural world.

David Orenstein | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>