Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer interface design starts with respecting the real world

20.02.2006


Protoypes can help designers meet user needs



Before Jeff Hawkins ever started making the original Palm Pilot digital organizer he prototyped it as a block of wood with fake buttons and a paper screen. To this day the Palm Pilot is a successful design of human and computer interaction that remains all too rare, says Stanford computer science Assistant Professor Scott Klemmer. Every time a person uses a computer--a desktop, a cell phone or even a chip-enabled coffee maker--the interaction is specified by an interface designer. These interfaces often fall short or even fail, Klemmer says, because designers overlook the physical nature of human beings and the real world. As computers become ubiquitous, designers must take everyday users into account from the beginning, prototyping extensively to stay attuned human needs and capabilities.

"In naïve techno-utopianism, we just put everything into the land of bits without really thinking about it," says Klemmer, who will speak Feb. 18 at the American Association for the Advancement of Science annual meeting in St. Louis. "We’ve lost a lot of the things that we had in the physical world--a lot of the intuitions, a lot of the fidelity of control that our bodies offer."


Traditional computer interfaces often hinder the way people work, learn, play and interact, Klemmer says. Virtual interactions should supplement--but not supplant--physical ones. At the conference, Klemmer will offer designers guidance including a set of principles to keep computer interfaces in physical perspective. He hopes the principles and closer attention to prototyping as a design methodology will help future computer interface designs deliver the benefits of information technology without sacrificing the inherent advantages of the physical world.

Design principles

Klemmer’s design principles address the shortcomings of traditional digital design approaches in accounting for the physical and social nature of human beings.

One key principle, for example, is that there is a limit to how much one should make product design virtual rather than physical. Simulations can speed the process, but designers like Hawkins gain invaluable feedback from building and critiquing physical prototypes. Seeking the happiest medium between physical and virtual design methods, Klemmer and doctoral candidate Bjoern Hartmann have developed a consumer electronics rapid prototyping system called d.Tools that allows users to design a gadget’s hardware and software in concert. To build an MP3 player, for example, a designer would assemble d.Tools hardware components such as "play" and "pause" buttons, a volume control, speakers and an LCD screen into a physical device. The d.Tools software, which automatically recognizes the hardware components, would bring the physical device "to life" by letting designers assign capabilities to the controls. The designers would also use d.Tools to create the interface between the user and the device.

Another principle is recognizing that the human body is a well-engineered machine fully capable of managing rich and intricate interactions with the world. Keyboards, mice or buttons might not provide the best interactions to meet a user’s needs. All the word processors in the world haven’t, for example, made the myth of the "paperless office" come true because for tasks like taking notes or writing down ideas, people often prefer working with pliable, reliable paper, Klemmer says. Meanwhile the popular video game Dance Dance Revolution, which players control by dancing on an electronic platform, is a huge success because it preserves the physical joy of dancing.

Designers should also keep in mind that in physical environments, people can quickly observe useful information about each other, a principle Klemmer calls "visibility." Walk around an auto body shop or an art studio, for example, and it is easy to see what everyone is working on and how that work is progressing. So far computer interfaces have, if anything, reduced visibility. Prototypes for feedback

The design principles will have the greatest impact if they are paired with the practice of prototyping, Klemmer says. Rather than trying to devise an entire digital product or experience in the lab before testing it with users, designers should frequently test mockups, dummies, and other limited versions of the project to gather specific feedback for continuous improvement.

The response of users to different kinds of prototypes can answer crucial questions early in development such as does the product look like users want it to? Does it work like users want it to? And, does it fit in well with the experience they want to have when they use it?

The need to design interfaces that can respect but augment the physical nature of humanity is becoming more acute as computers begin to greatly outnumber people. "Having thousands of keyboards per person is not a realistic solution," Klemmer says. "The successful interfaces will weave themselves into the fabric of everyday life." That is, computing will only seem natural when it is designed to be part of the natural world.

David Orenstein | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>