Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double views from ERS tandem mission adding depth to Canadian wilderness maps

15.02.2006


Unique views of Earth afforded by a pioneering twin ESA radar satellite flight has brought an extra dimension to maps of Canada’s newest territory, the results winning praise from the Canadian government.



Nunavut is the latest and also largest territory of Canada: located up in the frozen northeast, Nunavut has a population of only around 29 300 but an area the size of Western Europe. The Canadian government is currently refining and updating its geographic information for the entire country and Nunavut in particular, as a way of encouraging its development.

For the latest of a series of projects charting this region, Vexcel Canada has completed an additional 21 digital elevation model (DEM) map sheets for the Canadian government agency charged with mapping the nation’s topography, or ’lay of the land’: the Centre for Topographic Information Sherbrooke (CTIS).


DEMs are representations of variations in the Earth’s surface altitude in digital format which can be used for a variety of applications, including mineral exploration, planning mobile phone networks and selecting routes for pipelines or roads. To be truly useful, DEMs need to have high resolution and extreme accuracy across wide areas. This can be a difficult combination to achieve – unless you are using data from a particular type of satellite.

This is a technique of combining two or more SAR images of the same site acquired from close to the same position in order to obtain extremely precise information on topography as well as any surface changes occurring between acquisitions. InSAR works like a kind of ’spot the difference’: the slightest change in the distance the bouncing radar signals travel causes a shift in signal phase that sets up interference patterns – the resulting rainbow-coloured images being called ’interferograms’.

In practical terms satellite orbits vary slightly, so the ERS satellites did not acquire radar images at precisely the same point in space. In an effect similar to the way overlapping pictures appear stereoscopic with 3-D glasses, such slightly different perspectives on the same landscape contributes to phase shifting due to apparent variations in surface elevation. In this way InSAR is used to derive height elevation across wide areas.

Although now a decade old, the 140 000 image pair dataset from the ERS tandem mission remains uniquely useful today because the brief 24-hour revisit time between acquisitions results in much greater interferogram coherence. ERS tandem coverage also extends above 60º N and S, further than comparable datasets such as the Shuttle Radar Topography Mission (SRTM) – one key reason for its employment by Vexcel Canada. Across the world, the ERS tandem dataset goes on being used in a wide number of ways, from mapping forests to measuring glacial motion.

Vexcel Canada has now produced complete elevation data for 44 map sheets across Nunavut Territory, meeting stringent specifications from CTIS for Canadian Digital Elevation Data (CDED) of better than 7.5 m vertical accuracy at around 20 m postings. The project was completed under a demanding production schedule and resulted in high-resolution Digital Elevation Models (DEMs) and high praise from the Canadian government.

"The 21 CDED files [map sheets] produced by Vexcel are the best 1:50 000 scale DEMS produced using synthetic aperture radar satellite technology that we have ever seen," said Yves Robitaille, Project Manager for CTIS. "Certainly Vexcel met and exceeded our expectations."

For each of the products completed for CTIS, Vexcel leveraged ERS tandem data and its own EarthView InSAR production software, customised to allow for such large area elevation mapping. The ERS data was provided by ESA, while the Canadian Space Agency (CSA) gave support in scientific and technical testing, as well as methodological development towards producing the tailor-made InSAR DEM software.

This achievement results from work carried out for over a decade to exactly understand under what conditions and with what quality DEMs can be produced from ERS Tandem data. Back in 1997, ESA contracted Vexcel Canada (then Atlantis Scientific) to assess the suitability of ERS Tandem data for producing DEMs over the complete North American continent, including the production of a few example DEM products at high latitudes. The results of this study – together with others initiated by ESA - have been instrumental in improving techniques employed by value-adding companies to make better quality DEMs.

The ERS missions

The European Remote Sensing satellites - ERS-1 and ERS-2, launched in July 1991 and April 1995 respectively - were ESA’s first Earth Observation spacecraft, each carrying a comprehensive payload including an imaging Synthetic Aperture Radar (SAR), a radar altimeter and other powerful instruments to measure ocean surface temperature and winds at sea. ERS-2 also carries an additional sensor for atmospheric ozone research.

Following the launch of ERS-2 in 1995 ESA linked the two spacecraft in the first ever ’tandem’ mission which lasted for nine months. During this time the increased frequency and level of data available to scientists offered a unique opportunity to observe changes over a very short space of time, as both satellites orbited Earth only 24 hours apart. Radar images acquired in this way can be used to create uniquely high-coherence interferograms.

In spring 2000 the ERS-1 satellite encountred an unrecoverable failure in the onboard attitude control system, far exceeding its planned lifetime. ERS-2 remains operational and is expected to remain so for several more years, supplementing observations from its follow-on spacecraft Envisat, launched in March 2002.

More than 140 000 image pairs from the ERS tandem mission are today available for InSAR, and these have been utilised in many different ways beyond digital elevation model (DEM) production. The dataset played an important role in the European Commission-funded SIBERIA project, mapping boreal forests for global change studies. It was also used to monitor tropical deforestation and the detection of forest clear-cuts across Latin America.

Within the Polar Regions ERS tandem interferograms have been used to measure the motion of fast glaciers, important for understanding the dynamical processes associated with the polar ice balance.

The ERS tandem mission also paved the way for the coming generation of SAR spacecraft, with both Canada and Germany incorporating the tandem concept into their Radarsat-2/-3 and TanDEM-X missions respectively. The main change will be that the satellites will fly with a time separation measured in minutes rather than the one day between ERS-1 and ERS-2. This should further improve interferogram quality, with enhanced coherence because of smaller changes occurring on the ground between acquisitions.

Mariangela D’Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMDKSLVGJE_economy_0.html

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>