Data security: A problem in search of a mathematical theory

The need for security in electronic communications is crucial in today’s world. The foundation for providing this security rests on mathematics. In particular, a certain kind of mathematical function called a “hash function” is central in the design of cryptographic systems that protect electronic communications. But recently the most secure hash function in use today was shown to be vulnerable to attack. An article in the upcoming issue of the Notices of the AMS describes these attacks and sends out a call for a new mathematical theory to undergird future communications security systems.

A hash function is an easy-to-compute compression function that takes as input any string of computer bits and distills that string down to a fixed-length output string: Whether the input is an 8-character password or a 100-page document, the hash function outputs a string of a fixed length. An important feature of hash functions is that they must be hard—or at least computationally too expensive—to invert. So, for example, it should be hard, given the hash of a password, to recover the password itself.

One researcher calls hash functions the “duct tape” of cryptography because they are used everywhere for many different purposes: to authenticate messages, to ascertain software integrity, to create one-time passwords, and to support Internet communication protocols. The very ubiquity of hash functions makes any vulnerability found in them a widespread concern.

SHA-1 is a secure hash algorithm (that is, a computer algorithm based on a hash function) that is the government standard and is very widely used; it was developed by the National Security Agency. Other older and even less secure hash algorithms are still in use in many applications. Cryptographers were already concerned about vulnerabilities that had been exposed in those older algorithms. But they were astonished when, at a cryptography meeting in 2005, researchers announced that they had found a way to attack SHA-1 in far fewer steps than was previously known.

For now, SHA-1 is still safe; the method announced by the researchers would take a huge amount of computational time and resources, and it is not clear how this would be carried out. But such attacks always grow more sophisticated, so cryptographers would like to replace SHA-1 as soon as possible. The NSA has a series of hash algorithms, beginning with SHA-256, that are secure; the issue is how to deploy them throughout the infrastructure.

In her Notices article “Find Me a Hash”, Susan Landau describes these developments and the nature of the new vulnerability of SHA-1. Her central point is that the mathematical theory of hash functions needs much more development before researchers can come up with more secure hash algorithms for tomorrow’s applications.

Media Contact

Dr. Susan Landau EurekAlert!

More Information:

http://www.ams.org

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors