Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biology inspires perceptive machines

09.02.2006


Teaching a machine to sense its environment is one of the most intractable problems of computer science, but one European project is looking to nature for help in cracking the conundrum. It combined streams of sensory data to produce an adaptive, composite impression of surroundings in near real-time.



The team brought together electronic engineers, computer scientists, neuroscientists, physicists, and biologists. It looked at basic neural models for perception and then sought to replicate aspects of these in silicon.

"The objective was to study sensory fusion in biological systems and then translate that knowledge into the creation of intelligent computational machines," says Martin McGinnity, Professor of Intelligent Systems Engineering and Director of the Intelligent Systems Engineering Laboratory (ISEL) at the University of Ulster’s Magee Campus and coordinator of the Future and Emerging Technologies(FET) initiative-funded SENSEMAKER project of the IST programme.


SENSEMAKER took its inspiration from nature by trying to replicate aspects of the brain’s neural processes, which capture sensory data from eyes, ears and touch, and then combines these senses to present a whole picture of the scene or its environment. For example, sight can identify a kiwi, but touch can help tell if that kiwi is ripe, unripe or over-ripe.

What’s more, if one sense is damaged, or if a sensory function is lost due to environmental factors, say because it can’t see in the dark, the brain switches more resources to other senses, such as hearing or touch. Suddenly those faculties become comparatively hypersensitive. When it goes dark the brain pours resources into these two senses, along with hearing and smell, to extract the maximum possible data from the environment.

The team concentrated on two particular senses, namely sight and touch. The experimental touch-sensor system, developed in Heidelberg and used by the SENSEMAKER partner Trinity College, Dublin, is itself quite novel. It features an array of small, moveable spring-loaded pins. This enabled psychophysical experiments on touch and vision to be conducted on humans and was a very valuable tool in exploring human responses to sensory integration. The results from these experiments helped to inform the sensory fusion model.

Modelling sensory fusion

The project has created a sophisticated, biologically-inspired model of sensory fusion, for tactile and visual senses. Perhaps the greatest achievement of the project is the creation of a framework which allows extensive experimentation in terms of sensory integration. The project’s work can easily be extended into other sensory modalities; for example the project partners are currently planning to extend the work to auditory senses. The hardware implementation(s) of the model, which allow for extremely rapid learning as compared to biological timescales, will be exploited in follow-up projects.

"Using these systems we were able to show that the merging of tactile and visual information, or sensory fusion, improved overall performance," says Professor McGinnity. The ultimate outcome of this type of research is to implement perception capabilities in computer systems, with applications in a wide range of areas including robotics.

But a greater understanding of biological sensory fusion, and how to implement it in artificial systems, could do potentially much more.

"This type of research teaches us a lot about how biological systems work, and it could lead to new ways of treating people with sensory-related disabilities, though that kind of outcome will take a long time," says Professor McGinnity.

He says intelligent systems need to adapt to their environment without reprogramming; they need to be able to react autonomously in a manner that humans would describe as intelligent; for that they need a perception system that enables them to be aware of their surroundings.

Two other projects will carry aspects of their work further. The FACETS project, also funded by FET will continue to explore machine perception, focusing on vision. Meanwhile ISEL at Magee Campus is actively engaged in a major proposal to create a Centre of Excellence in Intelligent Systems. The Centre will progress a range of research problems related to the creation of intelligent systems, including sensory fusion, learning, adaptation, self-organisation, the implementation of large-scale biological neural sub-systems in hardware and distributed computational intelligence.

The project has brought to the team’s biologists and neuroscientists a greater knowledge and understanding of the engineering approach to problem solving and system design; conversely the engineers on the team benefited from a vastly improved insight into the world of biological system modelling. Overall the project has contributed to an improved understanding of how biological systems merge multimodal sensory information. This is one of the most difficult problems in science today; the results of the SENSEMAKER project are being disseminated in high quality international journals, reflecting the fact that the research performed in this project is at the state-of-the-art. Both biological and neurological science on the one hand, and machine intelligence and computer science on the other have benefited from its successful conclusion.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80430

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>