Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne and satellite radars record Frascati grape harvest

01.02.2006


The slopes of Frascati overlooking Rome boast rich, volcanic soils: wine has been produced there since time immemorial. However the latest vine crop should go down in history as the single best documented harvest ever.



Part of Frascati’s Controlled Origin Denomination – ’Denominazione d’Origine Controllata’ or DOC in Italian, a wine’s legally demarcated home region - was surveyed in ultra-sharp detail using an airborne radar sensor both before then after last October’s harvest. This two-stage ESA campaign was called BACCHUS-DOC, and was intended to complement a number of radar and optical satellite acquisitions by ERS-2, SPOT, Landsat, IKONOS and QuickBird.

Following processing of raw data, the results are now under study by a team from ESRIN, ESA’s European Centre for Earth Observation located within the area of study, and the nearby Tor Vergata University. In particular they are investigating to what extent the BACCHUS-DOC airborne and satellite radar imagery is sensitive to vineyard surfaces and the change in biomass following the grape harvest.


"We have been demonstrating the potential use of satellite radar imagery from ERS and Envisat for correlating the radar signal with the vineyard biomass, and in particular the ’grape biomass’," said Luigi Fusco of ESRIN. "The early results – applying detailed geographical information gathered on the area during previous projects – have shown that this correlation exists, and this detailed analysis is proving worthwhile."

BACCHUS-DOC was overseen by ESA’s dedicated Campaigns Unit, with the participation of the German Aerospace Center (DLR) and Rome’s Tor Vergata University, whose personnel carried out accompanying ground measurements. The Campaigns Unit and Bacchus team selected a 24.5 square kilometre area of interest – with orientation fitting the orbit and radar look direction of ERS-2 at that time.

For their part in the campaign, DLR operated their Experimental Synthetic Aperture Radar (E-SAR), flown on their customised Dornier-228 flown out of nearby Ciampino Airport. The E-SAR has a maximum spatial resolution of four metres and operates at five different radar signal wavelengths with selectable polarisations, a means of increasing signal sensitivity to different environmental variables. Such a performance is superior to the current generation of radar satellite sensors but presents a way to simulate the results available from future space-based instruments.

The initial E-SAR flight took place on October 5, followed up on 25 October. In the meantime the harvest took place. Highly radar-visible corner reflectors were placed at places within the area of interest to act as reference points. The precise aircraft route was tracked using GPS backed up by an onboard inertial navigation system (INS).

"The SAR image acquisitions were accompanied by contemporary ground measurements on the vineyards," explained Prof. Domenico Solimini of the Tor Vergata University. "An extensive survey identified the general conditions of vegetation and of the terrain in a wide area of the Frascati wine production zone.

"For the second overflight when the grapes had been harvested, only the parameters of stable structures were the same, so only the variable elements were monitored, such as leaf height, distribution and dimensions, number of leaves per unit area, roughness and moisture of the terrain, plus weed height."

The main scientific objective of BACCHUS-DOC was to investigate the sensitivity of polarimetic radar in measuring grape biomass, as well as additional useful parameters for inventorying and characterising vineyards such as vine rows, spacing and orientation, and vineyard borders. The potential to estimate local soil roughness and moisture is also being assessed.

Frascati was selected for the BACCHUS-DOC campaign because a dedicated geographic information system (GIS) has been constructed for this DOC area as part of a European Commission-funded project called Bacchus, aimed at applying Earth Observation and GIS technology to improve European wine quality. Bacchus is now complete, but a follow-on project called DiVino is extending the capabilities of the Frascati GIS.

For centuries Europe has been one of the world’s great wine producing regions, although cultivation practices are often inconsistent and expensive. With global competition growing, the hope is to develop information tools that combine aerial and satellite imagery with GIS technology in support of vineyard management and improving wine quality.

The part-EC-funded DiVino research consortium is made up of public and private bodies from four wine producing countries – Italy, France, Spain and Portugal – with participants covering different aspects of vine cultivation and marketing. Within Italy the participants include the Frascati DOC consortium, which represents some 700 local grape producers and wine makers.

A trial GIS has been released to the consortium for testing, with a formal presentation of results to the Frascati Community Council taking place soon, and a public workshop taking place in early March.

Mariangela D’Acunto | EurekAlert!
Further information:
http://www.esa.int/esaEO/SEM6YBNZCIE_economy_0.html
http://www.esa.int

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>