Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Grids we trust

27.01.2006


An object’s history and how it arose, in other words its provenance, grant it status. Translating this to computing will allow the information generated and managed within distributed networks to be proven and trusted. Laying the foundations for this translation is a team of European researchers.



The importance of understanding the process by which a result was generated is fundamental to many real-life applications in science, engineering, medical domain, supply management, etc. Without such information, users cannot reproduce, analyse or validate processes or experiments. Provenance is therefore important to enable users, scientists and engineers to trace how a particular result came about.

Networks of computers at distributed locations, also known as Grids, operate by dynamically creating services at opportunistic moments to satisfy the need of some user. As Steve Munroe, Exploitation Manager for the EU Provenance project at the University of Southampton explains: “These services may belong to different stakeholders operating under various different policies about information sharing. The results provided by such a composition of services must, however, be trusted by the user and yet, when the services disband, how are we to obtain the verification of the processes that contributed to the final result?”


This is why the IST-funded EU Provenance project is working to provide the mechanisms that enable such results to be trusted. It allows processes that contribute to a given result to be inspected and checks to be made to ensure that the correct processes were used.

In Grid applications the diverse actors and complex processes behind a result make provenance important. In addition, “many Grid applications (such as organ transplant management) must obey a variety of regulations imposed by different governing bodies,” says Munroe. “Provenance can again be used to determine that a given process has adhered to the necessary regulations, thus enabling the end user to place trust in the results received.”

In response, the project has defined a set of user requirements (carried out by the project partner MTA SZTAKI) to generate the software requirements for the provenance architecture, a first public version of which is now available.

The requirements cover both the logical and process architectures of provenance systems. The logical architecture defines the components of a system for the recording, maintaining, visualising, reasoning and analysis of process documentation, whereas the process architecture discusses scalability and security. Fundamentally they are technology-independent, which makes them reusable so they can be applied to different technologies.

The architecture developed by the project is generic, in the sense that a core set of functionality that any industrial strength provenance architecture should have has been identified and designed. Translating this to a real-world instance then involves implementing the logical architecture and extensive interactions with experts to integrate the system with target domain applications.

The project team is currently implementing the logical architecture (currently being carried out by IBM, the University of Southampton, and the University of Wales, Cardiff). This will then be used as the basis upon which examples of applications in aerospace engineering and organ transplant management will be made provenance aware (each of these applications are being managed by a project partner, i.e. the German Aerospace Center DLR and the Universitat Politecnica de Catalunya, respectively). Demonstrators for both applications will be done this year and these will be used to evaluate the architecture.

“We also are developing a methodology that will facilitate the development of provenance-aware systems in other domains,” adds Munroe. “Furthermore, we aim to develop preliminary standardisation proposals for provenance systems to submit to the relevant standardisation bodies.”

Ultimately such research will allow information generated and managed within a Grid infrastructure to be proven and trusted. This means that the information’s history, including the processes that created and modified it, are documented in a way that can be inspected, validated and reasoned about by authorised users that need to ensure information controls have not been altered, abused or tampered with.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80202

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>