Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Grids we trust

27.01.2006


An object’s history and how it arose, in other words its provenance, grant it status. Translating this to computing will allow the information generated and managed within distributed networks to be proven and trusted. Laying the foundations for this translation is a team of European researchers.



The importance of understanding the process by which a result was generated is fundamental to many real-life applications in science, engineering, medical domain, supply management, etc. Without such information, users cannot reproduce, analyse or validate processes or experiments. Provenance is therefore important to enable users, scientists and engineers to trace how a particular result came about.

Networks of computers at distributed locations, also known as Grids, operate by dynamically creating services at opportunistic moments to satisfy the need of some user. As Steve Munroe, Exploitation Manager for the EU Provenance project at the University of Southampton explains: “These services may belong to different stakeholders operating under various different policies about information sharing. The results provided by such a composition of services must, however, be trusted by the user and yet, when the services disband, how are we to obtain the verification of the processes that contributed to the final result?”


This is why the IST-funded EU Provenance project is working to provide the mechanisms that enable such results to be trusted. It allows processes that contribute to a given result to be inspected and checks to be made to ensure that the correct processes were used.

In Grid applications the diverse actors and complex processes behind a result make provenance important. In addition, “many Grid applications (such as organ transplant management) must obey a variety of regulations imposed by different governing bodies,” says Munroe. “Provenance can again be used to determine that a given process has adhered to the necessary regulations, thus enabling the end user to place trust in the results received.”

In response, the project has defined a set of user requirements (carried out by the project partner MTA SZTAKI) to generate the software requirements for the provenance architecture, a first public version of which is now available.

The requirements cover both the logical and process architectures of provenance systems. The logical architecture defines the components of a system for the recording, maintaining, visualising, reasoning and analysis of process documentation, whereas the process architecture discusses scalability and security. Fundamentally they are technology-independent, which makes them reusable so they can be applied to different technologies.

The architecture developed by the project is generic, in the sense that a core set of functionality that any industrial strength provenance architecture should have has been identified and designed. Translating this to a real-world instance then involves implementing the logical architecture and extensive interactions with experts to integrate the system with target domain applications.

The project team is currently implementing the logical architecture (currently being carried out by IBM, the University of Southampton, and the University of Wales, Cardiff). This will then be used as the basis upon which examples of applications in aerospace engineering and organ transplant management will be made provenance aware (each of these applications are being managed by a project partner, i.e. the German Aerospace Center DLR and the Universitat Politecnica de Catalunya, respectively). Demonstrators for both applications will be done this year and these will be used to evaluate the architecture.

“We also are developing a methodology that will facilitate the development of provenance-aware systems in other domains,” adds Munroe. “Furthermore, we aim to develop preliminary standardisation proposals for provenance systems to submit to the relevant standardisation bodies.”

Ultimately such research will allow information generated and managed within a Grid infrastructure to be proven and trusted. This means that the information’s history, including the processes that created and modified it, are documented in a way that can be inspected, validated and reasoned about by authorised users that need to ensure information controls have not been altered, abused or tampered with.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80202

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>