Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Networking computers to help combat disease

24.01.2006


3D structure of a target protein from Plasmodium falciparum (Credit: SCAI Fraunhofer)


3D-representation of a ligand (red) inside proteins from Plasmodium falciparum (blue – yellow) (Credit: SCAI Fraunhofer)


Subtropical diseases lay waste to millions of people each year. In the quest to find a cure scientists are using Grid computing, the major driving force for new approaches towards collaborative large-scale science, to discover new drugs and better understand the diseases.

Last year there were about 350-500 million infections and approximately 1.3 million deaths due to malaria, mainly in the tropics. Malaria is spread by female mosquitoes, which carry protozoan parasites called Plasmodium.

Currently drug discovery seeks compounds that can inhibit or kill invading parasites and infections, but there are potentially millions of candidate compounds. It can take 10 years to discover a drug and another 10 to get it approved.



Grid technology, where the resources of many computers in a network are applied to a single problem at the same time can reduce candidate compounds from millions to thousands or even hundreds, isolating the most promising candidates and speeding up the discovery process.

The new research is particularly important because these diseases are comparatively neglected by large pharmaceutical companies. "The idea for malaria came from a conversation I had with a friend, a pastor who works in Burkino-Faso, who told me that malaria is the biggest problem faced by the country," says Dr Vincent Breton, Research Associate at France’s Corpuscular Physics Laboratory (CNRS-IN2P3).

"Quite often it’s just the developed world that benefits from high-technology like Grid computing. I wanted Grids to benefit Africa," says Breton.

Two European projects are currently searching for candidate treatments, the Enabling Grids for E-sciencE (EGEE) project-based Wide In Silico Docking on Malaria (WISDOM), and Swiss Bio Grid’s DENGUE project. This type of research contrasts with in vitro and in vivo approaches and is now a hugely important first step in large-scale biological analyses.

Using the FlexX software developed at the Fraunhofer Institute and donated by the BioSolveIT company, WISDOM used the EGEE Grid to match 3-dimensional structures of proteins from the malarial parasite to ligands, chemical compounds that bind to protein receptors.

"Grids are particularly well suited to drug discovery because you can compute the probability for one ligand to fit, or ‘dock’, to one protein on each computer node in the Grid, giving massive parallelism," says Breton.

It takes between a few seconds and a few minutes to model whether there’s a match between a protein and a ligand, and the WISDOM project performed the equivalent of 80 CPU-years of calculations in just six weeks.

Analysis of WISDOM results at Germany’s Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), joint instigators and participants of the project alongside France’s CNRS-IN2P3, allowed the 1,000 most promising compounds out of 1 million candidates to be selected using a relative ranking scale between different ligands. The project identified both known candidates and new ones, which demonstrated the validity of the approach.

"Now we will use a supercomputer to even more precisely model the match between the candidate ligands and the proteins," says Breton.

Refined docking requires intensive computation because researchers must account for molecular dynamics. "There are a lot of atoms and we want to model how they interact with each other to further refine the ranking order of candidate compounds," says Breton. Grid computing works excellently for computation of large data sets that can be broken down into discrete tasks, while supercomputers excel at modelling highly interconnected data sets.

Drug discovery is probably the most exciting use of Grid technology in the battle against disease, but it is not the only one. The Africa@home project allows people to donate idle CPU cycles in a distributed infrastructure to perform epidemiological modelling. This enables researchers to calculate the impact of vaccines, for example, or the spread of a disease.

"But that’s not the only way to use Grids in epidemiology," says Breton. "They could also be used to federate databases collecting data on infection and treatment in malaria and Dengue, but also in HIV. This is vitally important information that is currently very difficult to collect in Africa."

"This project shows the importance of Grid technology, and the value of a resource like EGEE," concludes Breton.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80155

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>