Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Networking computers to help combat disease

24.01.2006


3D structure of a target protein from Plasmodium falciparum (Credit: SCAI Fraunhofer)


3D-representation of a ligand (red) inside proteins from Plasmodium falciparum (blue – yellow) (Credit: SCAI Fraunhofer)


Subtropical diseases lay waste to millions of people each year. In the quest to find a cure scientists are using Grid computing, the major driving force for new approaches towards collaborative large-scale science, to discover new drugs and better understand the diseases.

Last year there were about 350-500 million infections and approximately 1.3 million deaths due to malaria, mainly in the tropics. Malaria is spread by female mosquitoes, which carry protozoan parasites called Plasmodium.

Currently drug discovery seeks compounds that can inhibit or kill invading parasites and infections, but there are potentially millions of candidate compounds. It can take 10 years to discover a drug and another 10 to get it approved.



Grid technology, where the resources of many computers in a network are applied to a single problem at the same time can reduce candidate compounds from millions to thousands or even hundreds, isolating the most promising candidates and speeding up the discovery process.

The new research is particularly important because these diseases are comparatively neglected by large pharmaceutical companies. "The idea for malaria came from a conversation I had with a friend, a pastor who works in Burkino-Faso, who told me that malaria is the biggest problem faced by the country," says Dr Vincent Breton, Research Associate at France’s Corpuscular Physics Laboratory (CNRS-IN2P3).

"Quite often it’s just the developed world that benefits from high-technology like Grid computing. I wanted Grids to benefit Africa," says Breton.

Two European projects are currently searching for candidate treatments, the Enabling Grids for E-sciencE (EGEE) project-based Wide In Silico Docking on Malaria (WISDOM), and Swiss Bio Grid’s DENGUE project. This type of research contrasts with in vitro and in vivo approaches and is now a hugely important first step in large-scale biological analyses.

Using the FlexX software developed at the Fraunhofer Institute and donated by the BioSolveIT company, WISDOM used the EGEE Grid to match 3-dimensional structures of proteins from the malarial parasite to ligands, chemical compounds that bind to protein receptors.

"Grids are particularly well suited to drug discovery because you can compute the probability for one ligand to fit, or ‘dock’, to one protein on each computer node in the Grid, giving massive parallelism," says Breton.

It takes between a few seconds and a few minutes to model whether there’s a match between a protein and a ligand, and the WISDOM project performed the equivalent of 80 CPU-years of calculations in just six weeks.

Analysis of WISDOM results at Germany’s Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), joint instigators and participants of the project alongside France’s CNRS-IN2P3, allowed the 1,000 most promising compounds out of 1 million candidates to be selected using a relative ranking scale between different ligands. The project identified both known candidates and new ones, which demonstrated the validity of the approach.

"Now we will use a supercomputer to even more precisely model the match between the candidate ligands and the proteins," says Breton.

Refined docking requires intensive computation because researchers must account for molecular dynamics. "There are a lot of atoms and we want to model how they interact with each other to further refine the ranking order of candidate compounds," says Breton. Grid computing works excellently for computation of large data sets that can be broken down into discrete tasks, while supercomputers excel at modelling highly interconnected data sets.

Drug discovery is probably the most exciting use of Grid technology in the battle against disease, but it is not the only one. The Africa@home project allows people to donate idle CPU cycles in a distributed infrastructure to perform epidemiological modelling. This enables researchers to calculate the impact of vaccines, for example, or the spread of a disease.

"But that’s not the only way to use Grids in epidemiology," says Breton. "They could also be used to federate databases collecting data on infection and treatment in malaria and Dengue, but also in HIV. This is vitally important information that is currently very difficult to collect in Africa."

"This project shows the importance of Grid technology, and the value of a resource like EGEE," concludes Breton.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80155

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>