Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distribution model for digital content on the Internet

09.01.2006


The digitalising of information has opened up a great number of possibilities for many economic sectors which, using new technologies, have managed to considerably bring down costs of the various processes involved in their economic activity. Likewise, the spread and development of Internet has provided them with the possibility of making use of new schema for the faster and more economic distribution of materials than before, as well as immediate access to a potentially worldwide market. Nevertheless, this situation has brought with it the ease of illicitly accessing their products by millions of users who, moreover, can easily exchange them on the Net, thus violating the copyright associated with a large number of these items. These practices, generally falling under the term ‘piracy’, are currently one of the main issues for concern for almost all players in this sector, who are constantly demanding solutions to the problem.



In this context, watermarking and, more concretely, fingerprinting, are the basis for the majority of the solutions proposed to date, although a universal solution to resolve the problem completely has yet to be found.

The general aim of this thesis is to provide a definition for a new distribution model enabling the establishment of new schema for carrying out transactions with digital content, respecting all the rights involved such as authors’ copyright, clients’ rights to privacy and anonymity regarding acquisitions, etc., and with additional characteristics regarding simplicity and performance that ensure the viability of the said model.


The proposed distribution model comes under the category of detection schema for illicit copies, providing mechanisms for identifying offenders, based on fingerprinting techniques. The operation of this model is based, on the one hand, on the use of privacy and symmetric homomorphism, with attainable performances, in order to avoid ambiguities in the identification of offenders and, on the other, on the participation of different bodies amongst which stand out: a Reliability Body which, without publishing identities (forming part of the habitual functioning of this type of entity), enables anonymity to be provided for the buyers, at the same time as a correct detection of fraud. Apart from this, there is a new entity known as “Digital Publishing” that facilitates the integration of this content distribution model into business schema currently used for this type of transaction, and part of the activities of which are regulated by the Law on Intellectual Property. The flexibility of relationships amongst the various model entities is, moreover, a key factor for the practical viability of the model.

Also, for the study and assessment of security of the model, as a key aspect for its viability, a Risk Analysis scheme is defined based on the application of the ‘attack trees’ methodology. This process provides, in a systematic way, practical information about various aspects related to the level of security held by a distribution model as proposed here, as well as significant comparative data between different distribution schemes.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=850

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>