Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Building interoperability into medical information


Graphical interface of the Artemis mobile application used in ambulance

Modern health information systems today are proprietary and often only serve one department making it impossible to easily share data across one facility, never mind across different facilities or countries. A big problem, it makes it difficult for doctors to capture a complete clinical history of a patient. But one project hopes to overcome this.

“The healthcare interoperability problem can be investigated in two categories: Interoperability of the healthcare messages exchanged and interoperability of electronic healthcare records [EHRs],” says Professor Asuman Dogac, Director of the Software Research & Development Center in Turkey, and ARTEMIS project coordinator.

Right now messaging interfaces, or interface engines, are used to exchange information among different healthcare information systems. Currently, the Health Level 7 (HL7) Version 2 Messaging Standard is the most widely implemented.

Unfortunately, HL7 V2 compliance does not imply direct interoperability between healthcare systems, because V2 has no explicit information model. Instead it has rather vague definitions for many data fields and contains many optional fields.

EHRs suffer from similar problems. An EHR is digitally stored healthcare information about an individual that supports continuity of care, education and research, while ensuring confidentiality. A number of standardisation efforts are progressing to provide EHRs interoperability. However, an exchange of well-structured and machine-processable EHRs has not been achieved yet in practice.

ARTEMIS provides the desperately required interoperability between medical information systems through semantically-enriched Web services that use defined meanings of individual pieces of parameters. ARTEMIS uses existing standards, such as HL7, as a basis for defining both the service action semantics and the message semantics.

For EHRs, ARTEMIS uses constraint rules for specific clinical concepts, called ‘archetypes’, rather than distinct entities in the reference information model. It annotates their archetypes with ontologies, an established list of definitions, and then composes templates from archetypes and retrieves corresponding data from the underlying medical information systems.

To complicate matters, in most countries there are no unique person identifiers that would be valid for the whole lifetime of an individual and used by all parties in healthcare and for all episodes of care. In many cases several identifiers for a patient exist even within a single organisation.

Consequently a protocol is needed that allows the identification of patients by means of non-unique patient-related attributes. ARTEMIS developed a ‘Patient Identification Process’ (PIP) Protocol’. PIP provides a solution for continuity of care by locating and accessing prior clinical records and provides comprehensive security and privacy protection mechanisms.

Currently, the industry’s Integrating the Healthcare Enterprise (IHE) initiative proposes the Retrieve Information for Display (RID) integration profile to allow users retrieve and display patient-related documents on systems other than the document keeping systems. Although it is well suited for use in a single hospital or within a trust of hospitals that belong to a single Patient Identifier Domain, it is not designed for cross-boundary access on information stored in different hospitals.

ARTEMIS’ middleware infrastructure extends the IHE RID protocol for cross-enterprise search and access to patient-related clinical information, even if no Master Patient Index is available, and without modifications to existing information source actors. Applied to the ARTEMIS infrastructure, the RID Information Source and Display actors may be located in different institutions using different Patient ID domains and different sets of demographic data.

At the Healthcare Information and Management Systems Society annual conference in San Diego, February 2006, "we will run a demonstrator that will realise a scenario where, after an accident, a patient is admitted to the most appropriate hospital from the ambulance,” says Dr Dogac. “The patient will be admitted before the ambulance arrives at the hospital, via a mobile device. The hospital admissions service will then automatically seek out any relevant healthcare records of the patient in the ARTEMIS P2P network, and presents them to the doctor, although the hospitals discovered may not be using interoperable standards with each other. This is a considerable improvement over current systems."

Dr Dogac will begin a new project, SAPHIRE, in the next months. "That project will seek to extend the functionality of ARTEMIS. It will expose medical sensor data as semantically-enriched Web services. It will process sensor output, the patient’s medical history and clinical guidelines to help physicians with diagnoses and treatment."

But even without these new services, ARTEMIS already represents a major advance; it enables clinicians to capture the complete clinical history of a patient that may be spread out over a number of different institutes that do not interoperate.

Tara Morris | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>