Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building interoperability into medical information

04.01.2006


Graphical interface of the Artemis mobile application used in ambulance


Modern health information systems today are proprietary and often only serve one department making it impossible to easily share data across one facility, never mind across different facilities or countries. A big problem, it makes it difficult for doctors to capture a complete clinical history of a patient. But one project hopes to overcome this.

“The healthcare interoperability problem can be investigated in two categories: Interoperability of the healthcare messages exchanged and interoperability of electronic healthcare records [EHRs],” says Professor Asuman Dogac, Director of the Software Research & Development Center in Turkey, and ARTEMIS project coordinator.

Right now messaging interfaces, or interface engines, are used to exchange information among different healthcare information systems. Currently, the Health Level 7 (HL7) Version 2 Messaging Standard is the most widely implemented.



Unfortunately, HL7 V2 compliance does not imply direct interoperability between healthcare systems, because V2 has no explicit information model. Instead it has rather vague definitions for many data fields and contains many optional fields.

EHRs suffer from similar problems. An EHR is digitally stored healthcare information about an individual that supports continuity of care, education and research, while ensuring confidentiality. A number of standardisation efforts are progressing to provide EHRs interoperability. However, an exchange of well-structured and machine-processable EHRs has not been achieved yet in practice.

ARTEMIS provides the desperately required interoperability between medical information systems through semantically-enriched Web services that use defined meanings of individual pieces of parameters. ARTEMIS uses existing standards, such as HL7, as a basis for defining both the service action semantics and the message semantics.

For EHRs, ARTEMIS uses constraint rules for specific clinical concepts, called ‘archetypes’, rather than distinct entities in the reference information model. It annotates their archetypes with ontologies, an established list of definitions, and then composes templates from archetypes and retrieves corresponding data from the underlying medical information systems.

To complicate matters, in most countries there are no unique person identifiers that would be valid for the whole lifetime of an individual and used by all parties in healthcare and for all episodes of care. In many cases several identifiers for a patient exist even within a single organisation.

Consequently a protocol is needed that allows the identification of patients by means of non-unique patient-related attributes. ARTEMIS developed a ‘Patient Identification Process’ (PIP) Protocol’. PIP provides a solution for continuity of care by locating and accessing prior clinical records and provides comprehensive security and privacy protection mechanisms.

Currently, the industry’s Integrating the Healthcare Enterprise (IHE) initiative proposes the Retrieve Information for Display (RID) integration profile to allow users retrieve and display patient-related documents on systems other than the document keeping systems. Although it is well suited for use in a single hospital or within a trust of hospitals that belong to a single Patient Identifier Domain, it is not designed for cross-boundary access on information stored in different hospitals.

ARTEMIS’ middleware infrastructure extends the IHE RID protocol for cross-enterprise search and access to patient-related clinical information, even if no Master Patient Index is available, and without modifications to existing information source actors. Applied to the ARTEMIS infrastructure, the RID Information Source and Display actors may be located in different institutions using different Patient ID domains and different sets of demographic data.

At the Healthcare Information and Management Systems Society annual conference in San Diego, February 2006, "we will run a demonstrator that will realise a scenario where, after an accident, a patient is admitted to the most appropriate hospital from the ambulance,” says Dr Dogac. “The patient will be admitted before the ambulance arrives at the hospital, via a mobile device. The hospital admissions service will then automatically seek out any relevant healthcare records of the patient in the ARTEMIS P2P network, and presents them to the doctor, although the hospitals discovered may not be using interoperable standards with each other. This is a considerable improvement over current systems."

Dr Dogac will begin a new project, SAPHIRE, in the next months. "That project will seek to extend the functionality of ARTEMIS. It will expose medical sensor data as semantically-enriched Web services. It will process sensor output, the patient’s medical history and clinical guidelines to help physicians with diagnoses and treatment."

But even without these new services, ARTEMIS already represents a major advance; it enables clinicians to capture the complete clinical history of a patient that may be spread out over a number of different institutes that do not interoperate.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>