Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building interoperability into medical information

04.01.2006


Graphical interface of the Artemis mobile application used in ambulance


Modern health information systems today are proprietary and often only serve one department making it impossible to easily share data across one facility, never mind across different facilities or countries. A big problem, it makes it difficult for doctors to capture a complete clinical history of a patient. But one project hopes to overcome this.

“The healthcare interoperability problem can be investigated in two categories: Interoperability of the healthcare messages exchanged and interoperability of electronic healthcare records [EHRs],” says Professor Asuman Dogac, Director of the Software Research & Development Center in Turkey, and ARTEMIS project coordinator.

Right now messaging interfaces, or interface engines, are used to exchange information among different healthcare information systems. Currently, the Health Level 7 (HL7) Version 2 Messaging Standard is the most widely implemented.



Unfortunately, HL7 V2 compliance does not imply direct interoperability between healthcare systems, because V2 has no explicit information model. Instead it has rather vague definitions for many data fields and contains many optional fields.

EHRs suffer from similar problems. An EHR is digitally stored healthcare information about an individual that supports continuity of care, education and research, while ensuring confidentiality. A number of standardisation efforts are progressing to provide EHRs interoperability. However, an exchange of well-structured and machine-processable EHRs has not been achieved yet in practice.

ARTEMIS provides the desperately required interoperability between medical information systems through semantically-enriched Web services that use defined meanings of individual pieces of parameters. ARTEMIS uses existing standards, such as HL7, as a basis for defining both the service action semantics and the message semantics.

For EHRs, ARTEMIS uses constraint rules for specific clinical concepts, called ‘archetypes’, rather than distinct entities in the reference information model. It annotates their archetypes with ontologies, an established list of definitions, and then composes templates from archetypes and retrieves corresponding data from the underlying medical information systems.

To complicate matters, in most countries there are no unique person identifiers that would be valid for the whole lifetime of an individual and used by all parties in healthcare and for all episodes of care. In many cases several identifiers for a patient exist even within a single organisation.

Consequently a protocol is needed that allows the identification of patients by means of non-unique patient-related attributes. ARTEMIS developed a ‘Patient Identification Process’ (PIP) Protocol’. PIP provides a solution for continuity of care by locating and accessing prior clinical records and provides comprehensive security and privacy protection mechanisms.

Currently, the industry’s Integrating the Healthcare Enterprise (IHE) initiative proposes the Retrieve Information for Display (RID) integration profile to allow users retrieve and display patient-related documents on systems other than the document keeping systems. Although it is well suited for use in a single hospital or within a trust of hospitals that belong to a single Patient Identifier Domain, it is not designed for cross-boundary access on information stored in different hospitals.

ARTEMIS’ middleware infrastructure extends the IHE RID protocol for cross-enterprise search and access to patient-related clinical information, even if no Master Patient Index is available, and without modifications to existing information source actors. Applied to the ARTEMIS infrastructure, the RID Information Source and Display actors may be located in different institutions using different Patient ID domains and different sets of demographic data.

At the Healthcare Information and Management Systems Society annual conference in San Diego, February 2006, "we will run a demonstrator that will realise a scenario where, after an accident, a patient is admitted to the most appropriate hospital from the ambulance,” says Dr Dogac. “The patient will be admitted before the ambulance arrives at the hospital, via a mobile device. The hospital admissions service will then automatically seek out any relevant healthcare records of the patient in the ARTEMIS P2P network, and presents them to the doctor, although the hospitals discovered may not be using interoperable standards with each other. This is a considerable improvement over current systems."

Dr Dogac will begin a new project, SAPHIRE, in the next months. "That project will seek to extend the functionality of ARTEMIS. It will expose medical sensor data as semantically-enriched Web services. It will process sensor output, the patient’s medical history and clinical guidelines to help physicians with diagnoses and treatment."

But even without these new services, ARTEMIS already represents a major advance; it enables clinicians to capture the complete clinical history of a patient that may be spread out over a number of different institutes that do not interoperate.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>