Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft mathematician simplifies the search for oil

23.12.2005


Mathematical research at Delft University of Technology is making it easier to look for oil. Yogi Ahmad Erlangga, who receives his doctorate on Thursday 22 December, has developed a method of calculation which enables computers to solve a crucial equation much faster. In the past, this stumped oil company computers.



Funded by Shell and SenterNovem, Erlangga’s research is pure mathematics. It all centres on the so-called Helmholtz equation. Solving this is important in interpreting the acoustic measurements taken when prospecting for oil. Sound waves are transmitted into the ground and their reflections recorded as they return to the earth’s surface. Analysis of this data enables specialists to locate oil deposits.

In the past, these measurements have been taken two-dimensionally. Effectively, the earth was surveyed as a series of flat layers. But the oil companies would rather use a faster method involving three-dimensional blocks. Until recently, though, their computers were not powerful enough to do that. Solving the Helmholtz equation requires huge arithmetical capacity.


As part of his PhD research, Erlangga has succeeded in making the method of calculation used to solve the Helmholtz equation a hundred times faster. And that finally makes it possible for firms like Shell to use 3D calculations when prospecting for oil. So it seems highly likely that oil companies will express an interest in exploiting Erlangga’s work.

But other applications are also conceivable. This is because the Helmholtz equation is used to describe many kinds of wave. Not just acoustic ones, as in the oil example, but also electromagnetic waves including visible light. It is quite feasible, therefore, that Erlangga’s work could be applied to lasers – in data storage on a Blu-ray Disc, for example – or to radar measurements in aviation.

“Given the responses we have had from industry and foreign universities,” says Dr Kees Vuik, Erlangga’s PhD supervisor, “we believe that a thirty-year-old problem has been solved in this work.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>