Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delft mathematician simplifies the search for oil

23.12.2005


Mathematical research at Delft University of Technology is making it easier to look for oil. Yogi Ahmad Erlangga, who receives his doctorate on Thursday 22 December, has developed a method of calculation which enables computers to solve a crucial equation much faster. In the past, this stumped oil company computers.



Funded by Shell and SenterNovem, Erlangga’s research is pure mathematics. It all centres on the so-called Helmholtz equation. Solving this is important in interpreting the acoustic measurements taken when prospecting for oil. Sound waves are transmitted into the ground and their reflections recorded as they return to the earth’s surface. Analysis of this data enables specialists to locate oil deposits.

In the past, these measurements have been taken two-dimensionally. Effectively, the earth was surveyed as a series of flat layers. But the oil companies would rather use a faster method involving three-dimensional blocks. Until recently, though, their computers were not powerful enough to do that. Solving the Helmholtz equation requires huge arithmetical capacity.


As part of his PhD research, Erlangga has succeeded in making the method of calculation used to solve the Helmholtz equation a hundred times faster. And that finally makes it possible for firms like Shell to use 3D calculations when prospecting for oil. So it seems highly likely that oil companies will express an interest in exploiting Erlangga’s work.

But other applications are also conceivable. This is because the Helmholtz equation is used to describe many kinds of wave. Not just acoustic ones, as in the oil example, but also electromagnetic waves including visible light. It is quite feasible, therefore, that Erlangga’s work could be applied to lasers – in data storage on a Blu-ray Disc, for example – or to radar measurements in aviation.

“Given the responses we have had from industry and foreign universities,” says Dr Kees Vuik, Erlangga’s PhD supervisor, “we believe that a thirty-year-old problem has been solved in this work.”

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>